Matching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions (called atoms) taken from . An approximation with atoms has the form .
Attributes | Values |
---|
rdfs:label
| - Matching pursuit (en)
- Poszukiwanie dopasowujące (pl)
- 匹配追蹤 (zh)
|
rdfs:comment
| - 匹配追蹤(matching pursuit, MP)最早是時頻分析的分析工具,目的是要將一已知訊號拆解成由許多被稱作為原子訊號的加權總和,而且企圖找到與原來訊號最接近的解。其中原子訊號為一極大的原子庫中的元素。以數學式子表示可以得到: 其中,是權重,是由字典中獲得的原子訊號。 如同傅立葉級數將一訊號拆解成一系列的正弦波的相加,其中每個成分擁有不同的係數作為權重,其數學式子如下: 而匹配追蹤也具有將訊號拆解成一系列原子相加的意涵,甚至可以使用匹配追蹤去描述傅立葉級數,也就是原子庫對應到的所有正弦函數的集合。 (zh)
- Matching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions (called atoms) taken from . An approximation with atoms has the form . (en)
- Poszukiwanie dopasowujące (ang. matching pursuit) – rodzaj techniki numerycznej, która polega na znalezieniu „najlepszego dopasowania” funkcji z określonego słownika do wielowymiarowych danych. Podstawowa idea polega na reprezentacji sygnału z przestrzeni Hilberta jako ważonej sumy funkcji (zwanych atomami) ze słownika (pl)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - Matching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions (called atoms) taken from . An approximation with atoms has the form where is the th column of the matrix and is the scalar weighting factor (amplitude) for the atom . Normally, not every atom in will be used in this sum. Instead, matching pursuit chooses the atoms one at a time in order to maximally (greedily) reduce the approximation error. This is achieved by finding the atom that has the highest inner product with the signal (assuming the atoms are normalized), subtracting from the signal an approximation that uses only that one atom, and repeating the process until the signal is satisfactorily decomposed, i.e., the norm of the residual is small,where the residual after calculating and is denoted by . If converges quickly to zero, then only a few atoms are needed to get a good approximation to . Such sparse representations are desirable for signal coding and compression. More precisely, the sparsity problem that matching pursuit is intended to approximately solve is where is the pseudo-norm (i.e. the number of nonzero elements of ). In the previous notation, the nonzero entries of are . Solving the sparsity problem exactly is NP-hard, which is why approximation methods like MP are used. For comparison, consider the Fourier transform representation of a signal - this can be described using the terms given above, where the dictionary is built from sinusoidal basis functions (the smallest possible complete dictionary). The main disadvantage of Fourier analysis in signal processing is that it extracts only the global features of the signals and does not adapt to the analysed signals . By taking an extremely redundant dictionary, we can look in it for atoms (functions) that best match a signal . (en)
- Poszukiwanie dopasowujące (ang. matching pursuit) – rodzaj techniki numerycznej, która polega na znalezieniu „najlepszego dopasowania” funkcji z określonego słownika do wielowymiarowych danych. Podstawowa idea polega na reprezentacji sygnału z przestrzeni Hilberta jako ważonej sumy funkcji (zwanych atomami) ze słownika Przykładem podobnych reprezentacji jest rozwinięcie w szereg Fouriera, gdy słownik jest zbudowany tylko z podstawowych funkcji (najmniejszy możliwy kompletny słownik). Główną wadą analizy Fouriera w cyfrowym przetwarzaniu sygnałów jest to, że mówi nam ona tylko o globalnych cechach sygnałów i nie dostosowuje się do analizowanych sygnałów Używając redundantnego słownika możemy szukać w nim funkcji, które najlepiej pasują do sygnału f. Znalezienie takiej reprezentacji, gdzie większość współczynników w sumie jest zbliżone do 0 jest pożądane m.in. do kodowania sygnału i kompresji. (pl)
- 匹配追蹤(matching pursuit, MP)最早是時頻分析的分析工具,目的是要將一已知訊號拆解成由許多被稱作為原子訊號的加權總和,而且企圖找到與原來訊號最接近的解。其中原子訊號為一極大的原子庫中的元素。以數學式子表示可以得到: 其中,是權重,是由字典中獲得的原子訊號。 如同傅立葉級數將一訊號拆解成一系列的正弦波的相加,其中每個成分擁有不同的係數作為權重,其數學式子如下: 而匹配追蹤也具有將訊號拆解成一系列原子相加的意涵,甚至可以使用匹配追蹤去描述傅立葉級數,也就是原子庫對應到的所有正弦函數的集合。 (zh)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is known for
of | |
is foaf:primaryTopic
of | |