rdfs:comment
| - La demostració per inducció en matemàtica és un tipus de demostració que s'aplica quan un cas base és provat i una regla d'inducció és usada per provar una sèrie d'altres casos que normalment és infinita. L'any 1575 Francesco Maurolico va fer la primera demostració per inducció al seu treball Arithmeticorum libri duo. En una forma general mostra que les formes que poden ser avaluades són equivalents en el que es coneix com a inducció estructural. La Demostració per inducció és una regla d'inferència usada en proves formals, que son exemples de raonament deductiu. (ca)
- Matematická indukce je metoda dokazování matematických vět a tvrzení, která se používá, pokud chceme ukázat, že dané tvrzení platí pro všechna přirozená čísla, případně jinou, předem danou nekonečnou posloupnost. Typicky se užívá k důkazům těch tvrzení o přirozených číslech, u nichž je snadné ověřit, že platí pro číslo 1, a zároveň lze platnost pro každé dané n převést v konečně mnoha krocích na platnost pro 1 s tím, že počet těchto kroků s rostoucím n také roste. (cs)
- Matematikan, indukzio matematikoaren printzipioa, -ren menpean dauden proposizioak egia diren ala ez frogatzea ahalbidetzen duen arrazonamendua da. Kontuan harturik, zenbaki arrunt infinituko multzoaren barruan dagoela. Arrazonamendua hurrengoa izango litzateke: propietatea betetzen duen zenbaki arrunt bat hartuz, frogatu behar da edozein zenbaki , propietatea izanik, inplikatzen duela zenbakiak ere propietatea beteko duela. Beraz baino handiagoak diren zenbaki guztiak propietatea beteko dute. (eu)
- 수학적 귀납법(數學的歸納法, 영어: mathematical induction)은 모든 자연수가 어떤 주어진 성질을 만족시킨다는 명제를 증명하는 방법의 하나이다. 가장 작은 자연수(문맥에 따라 0일 수도 1일 수도 있다)가 그 성질을 만족시킴을 증명한 뒤, 만약 어떤 자연수가 만족시키면 바로 다음 자연수 역시 만족시킴을 증명하기만 하면, 모든 자연수에 대한 증명이 끝난다. 이는 임의의 정초 관계를 갖춘 집합 위의 초한 귀납법으로 확장할 수 있다. 수학적 귀납법은 이름과는 달리 이 아닌 연역적 논증에 속한다. 수학적 귀납법은 자연수의 페아노 공리계의 공리이며, 메타논리학적 추론 규칙이기도 하다. (ko)
- 数学的帰納法(すうがくてききのうほう、英: mathematical induction)は、数学における証明の手法の一つである。 (ja)
- 数学归纳法(英語:Mathematical Induction MI)是一种数学证明方法,通常被用于证明某个给定命题在整个或者局部自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。 虽然数学归纳法名字中有“归纳”,但是数学归纳法并非逻辑上不严谨的归纳推理法,它属于完全严谨的演绎推理法。事實上,所有數學證明都属于演繹推理方法。 (zh)
- الاستقراء الرياضي (بالإنجليزية: Mathematical induction) هو أحد أنواع البرهان الرياضي تستخدم عادة لبرهنة أنّ معادلة أو متباينة ما صحيحة لمجموعة لانهائية من الأعداد، كالأعداد الصحيحة. يعتمد البرهان على مبدأ وقوع أحجار الدومينو، ويتم على مرحلتين: في الأولى، يبرهن أنّ أوّل رقم في المجموعة يحقّق المطلوب، وفي الثانية نفرض أنّ المطلوب يتحقّق لعدد ما من المجموعة، ونبرهن، جبريًا، مثلاً، أنّه يتحقّق أيضًا للعدد الذي يليه في المجموعة استنادًا على الفرض وعلى الأساس. (ar)
- Η μαθηματική επαγωγή, ή διαφορετικά τέλεια επαγωγή, είναι μια μέθοδος μαθηματικής απόδειξης που συνήθως χρησιμοποιείται για να αποδειχτεί ότι μια πρόταση ισχύει για όλους τους φυσικούς αριθμούς. Η μαθηματική επαγωγή είναι λογικά ισοδύναμη με την αρχή της καλής διάταξης. Όλες οι προτάσεις που αποδεικνύονται με μαθηματική επαγωγή εξαρτώνται από ένα φυσικό αριθμό, ας πούμε τον αριθμό ν. Όπως για παράδειγμα η πρόταση: (el)
- Matematika indukto estas matematika pruvmetodo, per kiu oni pruvas aserton por ĉiuj naturaj nombroj. Ĉar temas pri senfina kvanto da nombroj, tia pruvo ne povas esti realigata por ĉiu unuopa kazo. Tial oni realigas la pruvon per du ŝtupoj: La bazo de la indukto por la plej malgranda nombro (plej ofte 0 aŭ 1) kaj la paŝo de la indukto, kiu logike deduktas de aserto pri iu varianta nombro la koncernan aserton por la sekva nombro. Ĉi tiu pruvmetodo havas fundamentan rolon en la aritmetiko kaj aroteorio, kaj tial gravas por ĉiuj branĉoj de matematiko. (eo)
- En matemáticas, la inducción es un razonamiento que permite demostrar proposiciones que dependen de una variable que toma una infinidad de valores enteros. En términos simples, la inducción matemática consiste en el siguiente razonamiento: Dado un número entero que tiene la propiedad , y el hecho de que si hasta cualquier número entero con la propiedad implique que también la tiene, entonces, los números enteros a partir de tienen la propiedad . La demostración está basada en el axioma denominado principio de la inducción matemática. (es)
- Die vollständige Induktion ist eine mathematische Beweismethode, nach der eine Aussage für alle natürlichen Zahlen bewiesen wird, die größer oder gleich einem bestimmten Startwert sind. Da es sich um unendlich viele Zahlen handelt, kann eine Herleitung nicht für jede Zahl einzeln erbracht werden. Sie ist ein deduktives Verfahren. Der Beweis, dass die Aussage für alle ( meist 1 oder 0) gilt,wird daher in zwei Etappen durchgeführt: Oder weniger „mathematisch“ formuliert: (de)
- Mathematical induction is a method for proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), ... all hold. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: Mathematical induction proves that we can climb as high as we like on a ladder, by proving that we can climb onto the bottom rung (the basis) and that from each rung we can climb up to the next one (the step). — Concrete Mathematics, page 3 margins. (en)
- En mathématiques, le raisonnement par récurrence (ou par induction, ou induction complète) est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels. Le raisonnement par récurrence consiste à démontrer les points suivants :
* la propriété est satisfaite par un entier n0 (généralement 0 ou 1) ;
* chaque fois que cette propriété est satisfaite par un certain nombre entier naturel n ≥ n0, elle est également satisfaite par son successeur, c'est-à-dire par le nombre entier n + 1. (fr)
- Induksi matematika merupakan salah satu kegiatan penalaran deduktif yang berkaitan dengan pembuktian matematika. Dalam matematika, induksi matematika merupakan sebuah dasar aksioma bagi beberapa teorema yang melibatkan bilangan asli. Pembuktian suatu pernyataan matematis dengan induksi matematika dilakukan pada objek matematika yang bersifat diskrit, misalnya teori bilangan, teori graf, dan kombinatorika. Matematikawan menggunakan induksi matematika untuk menjelaskan pernyataan matematika yang telah diketahui kebenarannya. (in)
- Il principio d'induzione (da non confondersi con il metodo di induzione) è un enunciato sui numeri naturali che in matematica trova un ampio impiego nelle dimostrazioni, per provare che una certa proprietà è valida per tutti i numeri interi. L'idea intuitiva alla sua base è l'effetto domino: affinché le tessere da domino disposte lungo una fila cadano tutte sono sufficienti due condizioni:
* che cada la prima tessera;
* che ogni tessera sia posizionata in modo tale che cadendo provochi la caduta della successiva. (it)
- In de wiskunde is volledige inductie een methode om te bewijzen dat een uitspraak geldig is voor alle natuurlijke getallen. Het is de bekendste vorm van wiskundige inductie. Omdat er oneindig veel natuurlijke getallen zijn, kan een dergelijk bewijs niet voor elk getal afzonderlijk worden geleverd. Volledige inductie houdt in de meest gebruikelijke vorm in dat het bewijs wordt geleverd voor het getal 0 en dat wordt bewezen dat als de uitspraak geldig is voor enig natuurlijk getal, de uitspraak ook geldig is voor de opvolger van dit getal. Zonder dat voor ieder natuurlijk getal de uitspraak afzonderlijk is bewezen, kan men nu concluderen dat ze voor elk natuurlijk getal geldig is. Uit de geldigheid voor 0 volgt immers de geldigheid voor 1 en uit de geldigheid voor 1 volgt die voor 2, enzovo (nl)
- Indukcja matematyczna – metoda dowodzenia twierdzeń o prawdziwości nieskończonej liczby stwierdzeń oraz definiowania rekurencyjnego (zob. ). W najbardziej typowych przypadkach dotyczą one liczb naturalnych. (pl)
- Indução matemática é um método de prova matemática usado para demonstrar a verdade de um número infinito de proposições. A forma mais simples e mais comum de indução matemática prova que um enunciado vale para todos os números naturais n e consiste de dois passos: 1.
* A base: mostrar que o enunciado vale para n = 0, ou n = 1, dependendo da definição utilizada de ; 2.
* O passo indutivo: mostrar que, se o enunciado vale para n = k, então o mesmo enunciado vale para n = k + 1. 1.
* O primeiro dominó cairá. 2.
* Sempre que um dominó cair, seu próximo vizinho também cairá. (pt)
- Matematisk induktion är en bevismetod som tillämpas på påståenden som omfattar mängden av naturliga tal som är större än eller lika med ett startvärde (till exempel 0 eller 1). Då mängden naturliga tal är obegränsad kan bevis inte utföras för varje enskilt fall. I det generella induktionsbeviset delas beviset för påståendet upp i tre steg: När dessa steg är utförda är det bevisat att påståendet gäller för alla n från och med det antagna startvärdet. Tekniken kan även tillämpas på de matematiska objekt som är vidareutvecklingar av de positiva heltalen, ordinaltalen. (sv)
- Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером — база (базис) индукции, а затем доказывается, что если верно утверждение с номером , то верно и следующее утверждение с номером — шаг индукции, или индукционный переход. (ru)
- Математи́чна інду́кція — це застосування принципу індукції для доведення теорем у математиці. Зазвичай полягає в доведенні правильності твердження стосовно одного з натуральних чисел, а потім всіх наступних. Принцип індукції полягає в тому, що нескінченна послідовність тверджень , , правильна якщо: 1.
* — правильне, та 2.
* із правильності випливає правильність (істинність) для всіх k. (uk)
|