In abstract algebra, particularly ring theory, maximal common divisors are an abstraction of the number theory concept of greatest common divisor (GCD). This definition is slightly more general than GCDs, and may exist in rings in which GCDs do not. Halter-Koch (1998) provides the following definition. is a maximal common divisor of a subset, , if the following criteria are met: 1. * for all 2. * Suppose , and for all . Then .
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
dct:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage redirect of | |
is foaf:primaryTopic of |