About: Memory overcommitment     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMemory_overcommitment&invfp=IFP_OFF&sas=SAME_AS_OFF

Memory overcommitment is a concept in computing that covers the assignment of more memory to virtual computing devices (or processes) than the physical machine they are hosted, or running on, actually has. This is possible because virtual machines (or processes) do not necessarily use as much memory at any one point as they are assigned, creating a buffer. If four virtual machines each have 1 GB of memory on a physical machine with 4 GB of memory, but those virtual machines are only using 500 MB, it is possible to create additional virtual machines that take advantage of the 500 MB each existing machine is leaving free. Memory swapping is then used to handle spikes in memory usage. The disadvantage of this approach is that memory swap files are slower to read from than 'actual' memory, whi

AttributesValues
rdf:type
rdfs:label
  • Memory overcommitment (en)
rdfs:comment
  • Memory overcommitment is a concept in computing that covers the assignment of more memory to virtual computing devices (or processes) than the physical machine they are hosted, or running on, actually has. This is possible because virtual machines (or processes) do not necessarily use as much memory at any one point as they are assigned, creating a buffer. If four virtual machines each have 1 GB of memory on a physical machine with 4 GB of memory, but those virtual machines are only using 500 MB, it is possible to create additional virtual machines that take advantage of the 500 MB each existing machine is leaving free. Memory swapping is then used to handle spikes in memory usage. The disadvantage of this approach is that memory swap files are slower to read from than 'actual' memory, whi (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Memory overcommitment is a concept in computing that covers the assignment of more memory to virtual computing devices (or processes) than the physical machine they are hosted, or running on, actually has. This is possible because virtual machines (or processes) do not necessarily use as much memory at any one point as they are assigned, creating a buffer. If four virtual machines each have 1 GB of memory on a physical machine with 4 GB of memory, but those virtual machines are only using 500 MB, it is possible to create additional virtual machines that take advantage of the 500 MB each existing machine is leaving free. Memory swapping is then used to handle spikes in memory usage. The disadvantage of this approach is that memory swap files are slower to read from than 'actual' memory, which can lead to performance drops. While memory overcommitment is usually talked about in the context of virtualization, it is actually a generalised concept; Windows NT contained overcommitment features, as do most modern generalised operating systems, including the Linux kernel. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software