Minimum-distance estimation (MDE) is a conceptual method for fitting a statistical model to data, usually the empirical distribution. Often-used estimators such as ordinary least squares can be thought of as special cases of minimum-distance estimation. While consistent and asymptotically normal, minimum-distance estimators are generally not statistically efficient when compared to maximum likelihood estimators, because they omit the Jacobian usually present in the likelihood function. This, however, substantially reduces the computational complexity of the optimization problem.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
dct:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage redirect of | |
is foaf:primaryTopic of |