About: Minkowski–Hlawka theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMinkowski%E2%80%93Hlawka_theorem&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, the Minkowski–Hlawka theorem is a result on the lattice packing of hyperspheres in dimension n > 1. It states that there is a lattice in Euclidean space of dimension n, such that the corresponding best packing of hyperspheres with centres at the lattice points has density Δ satisfying This result was stated without proof by Hermann Minkowski and proved by Edmund Hlawka. The result is related to a linear lower bound for the Hermite constant.

AttributesValues
rdf:type
rdfs:label
  • Minkowski–Hlawka theorem (en)
rdfs:comment
  • In mathematics, the Minkowski–Hlawka theorem is a result on the lattice packing of hyperspheres in dimension n > 1. It states that there is a lattice in Euclidean space of dimension n, such that the corresponding best packing of hyperspheres with centres at the lattice points has density Δ satisfying This result was stated without proof by Hermann Minkowski and proved by Edmund Hlawka. The result is related to a linear lower bound for the Hermite constant. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
authorlink
  • Hermann Minkowski (en)
  • Edmund Hlawka (en)
first
  • Hermann (en)
  • Edmund (en)
last
  • Minkowski (en)
  • Hlawka (en)
year
loc
  • pages 265–276 (en)
has abstract
  • In mathematics, the Minkowski–Hlawka theorem is a result on the lattice packing of hyperspheres in dimension n > 1. It states that there is a lattice in Euclidean space of dimension n, such that the corresponding best packing of hyperspheres with centres at the lattice points has density Δ satisfying with ζ the Riemann zeta function. Here as n → ∞, ζ(n) → 1. The proof of this theorem is indirect and does not give an explicit example, however, and there is still no known simple and explicit way to construct lattices with packing densities exceeding this bound for arbitrary n. In principle one can find explicit examples: for example, even just picking a few "random" lattices will work with high probability. The problem is that testing these lattices to see if they are solutions requires finding their shortest vectors, and the number of cases to check grows very fast with the dimension, so this could take a very long time. This result was stated without proof by Hermann Minkowski and proved by Edmund Hlawka. The result is related to a linear lower bound for the Hermite constant. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software