About: Monte Carlo tree search     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Rule105846932, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4g2f37i587

In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some kinds of decision processes, most notably those employed in software that plays board games. In that context MCTS is used to solve the game tree. MCTS was combined with neural networks in 2016 and has been used in multiple board games like Chess, Shogi, Checkers, Backgammon, Contract Bridge, Computer Go, Scrabble, and Clobber as well as in turn-based-strategy video games (such as Total War: Rome II's implementation in the high level campaign AI).

AttributesValues
rdf:type
rdfs:label
  • Arbre de cerca Monte Carlo (ca)
  • Árbol de búsqueda Monte Carlo (es)
  • Recherche arborescente Monte-Carlo (fr)
  • Ricerca ad albero Monte Carlo (it)
  • モンテカルロ木探索 (ja)
  • 몬테카를로 트리 탐색 (ko)
  • Monte Carlo tree search (en)
  • Monte-Carlo Tree Search (pl)
  • 蒙特卡洛树搜索 (zh)
  • Дерево пошуку Монте-Карло (uk)
rdfs:comment
  • En ciencias de la computación el árbol de búsqueda Monte Carlo (en inglés MCTS) es un algoritmo de búsqueda heurístico para algunos tipos de proceso de toma de decisiones, sobre todo los que trabajan con juegos. Un ejemplo destacado reciente es en los programas Go,​ y también se ha utilizado en otros juegos de mesa, así como en videojuegos en tiempo real y juegos no deterministas como el póquer. (es)
  • En informatique, et plus précisément en intelligence artificielle, la recherche arborescente Monte Carlo ou Monte Carlo tree search (MCTS) est un algorithme de recherche heuristique utilisé dans le cadre de la prise de décision. Il est notamment employé dans les jeux. On peut citer son implémentation dans le jeu vidéo Total War: Rome II avec son mode campagne IA haut-niveau et les récents programmes informatiques de Go, suivis par les échecs et shogi, ainsi que les jeux vidéo en temps réel et les jeux à information incomplète tels que le poker. (fr)
  • In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some kinds of decision processes, most notably those employed in software that plays board games. In that context MCTS is used to solve the game tree. MCTS was combined with neural networks in 2016 and has been used in multiple board games like Chess, Shogi, Checkers, Backgammon, Contract Bridge, Computer Go, Scrabble, and Clobber as well as in turn-based-strategy video games (such as Total War: Rome II's implementation in the high level campaign AI). (en)
  • 컴퓨터 과학에서 몬테카를로 트리 탐색(Monte Carlo tree search, MCTS)은 모종의 의사 결정을 위한 체험적 탐색 알고리즘으로, 특히 게임을 할 때에 주로 적용된다. 선두적 예로 컴퓨터 바둑 프로그램이 있으나, 다른 보드 게임, 실시간 비디오 게임, 포커와 같은 비결정적 게임에도 사용되어 왔다. (ko)
  • モンテカルロ木探索(モンテカルロきたんさく、英: Monte Carlo tree search、略称MCTS)とは、モンテカルロ法を使った木の探索の事。に対する、ヒューリスティクス(=途中で不要な探索をやめ、ある程度の高確率で良い手を導ける)な探索アルゴリズムである。 モンテカルロ木検索は、主に囲碁・チェス・将棋などのゲームの次の着手の決定などに使用される。また、リアルタイムPCゲームや、大富豪、ポーカーなどの相手の手の内が全て分かるわけではないゲームへも使用される。 (ja)
  • Monte-Carlo Tree Search (w skrócie MCTS) – heurystyka podejmowania decyzji w pewnych zadaniach sztucznej inteligencji, używana zwłaszcza do wyboru ruchów w grach. Sztandarowy przykład jej zastosowania to współczesne programy komputerowe do gry w go. Metodę MCTS stosuje się również w programach grających w inne gry planszowe (między innymi Hex, Havannah, i Arimaa), w gry czasu rzeczywistego (na przykład Ms. Pac-Man) oraz w gry niedeterministyczne (na przykład skata, pokera, Magic: The Gathering czy Osadników z Catanu). Metoda MCTS skupia się na analizie najbardziej obiecujących ruchów, opierając rozrost drzewa wariantów na losowym próbkowaniu przestrzeni przeszukiwań. (pl)
  • 蒙特卡洛树搜索(英語:Monte Carlo tree search;简称:MCTS)是一种用于某些决策过程的搜索算法,最引人注目的是在游戏中的使用。一个主要例子是电脑围棋程序,它也用于其他棋盘游戏、即时电子游戏以及不确定性游戏。 (zh)
  • La ricerca ad albero Monte Carlo (nota anche come MCTS, acronimo dell'inglese Monte Carlo tree search) è un algoritmo di ricerca euristica sviluppato per la ricerca in alberi di decisione, che ha applicazione nella soluzione di giochi da tavolo. L'algoritmo venne introdotto nel 2006 per il gioco del go ed è stato in seguito applicato ad altri giochi ad informazione perfetta come scacchi e Shōgi, a giochi ad informazione incompleta come bridge e poker, e a videogiochi di strategia a turni come Total War: Rome II. (it)
  • У інформатиці дерево пошуку Монте-Карло (англ. Monte Carlo tree search, ДПМК) — це евристичний алгоритм пошуку який можна використати для деяких видів процесів ухвалення рішень, а особливо для тих, які використовуються в програмному забезпеченні, яке грає в настільні ігри з дошкою. У цьому контексті ДПМК використовується для побудови дерева гри. (uk)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Computer-go-ratings-English.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/MCTS-steps.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/MCTS_Algorithm.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Mogo-hane.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Tic-tac-toe-RAVE-English.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software