About: Non-analytic smooth function     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Relation100031921, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FNon-analytic_smooth_function&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below. One of the most important applications of smooth functions with compact support is the construction of so-called mollifiers, which are important in theories of generalized functions, such as Laurent Schwartz's theory of distributions.

AttributesValues
rdf:type
rdfs:label
  • Fonction régulière non analytique (fr)
  • 비 해석적 매끄러운 함수 (ko)
  • Non-analytic smooth function (en)
rdfs:comment
  • 수학에서, 매끄러운 함수(무한히 미분가능한 함수)와 해석함수 는 가장 중요한 함수의 유형이다. 어떠한 실수 인자를 가지는 해석함수는 매끄럽다는것은 쉽게 증명된다. 아래의 와 같이 그 역은 참이 아니다 콤팩트 지지 매끄러운 함수 의 중요한 적용 중 하나는 로랑 슈바르츠의 분포이론과 같은 이론에서 중요한 소위 말하는 완화자의 생성의 역할을 하는 것이다. 매끄럽지만 비 해석적인 함수의 존재는 미분기하학과 해석 기하학의 핵심적인 차이점을 나타낸다. 층 이론에서, 이 차이점은 다음과 같이 설명할 수 있다: 해석적인 경우와 비교해서 미분가능한 다양체에서 미분가능한 함수의 층은 단사층이다. 다음 함수는 보통 미분가능한 다양체에서 단위 분할을 만들 때 사용된다. (ko)
  • En mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz. (fr)
  • In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below. One of the most important applications of smooth functions with compact support is the construction of so-called mollifiers, which are important in theories of generalized functions, such as Laurent Schwartz's theory of distributions. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Mollifier_Illustration.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Non-analytic_smooth_function.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Smooth_non-analytic_function.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Smooth_transition_from_0_to_1.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software