About: Nonabelian Hodge correspondence     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FNonabelian_Hodge_correspondence&invfp=IFP_OFF&sas=SAME_AS_OFF

In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence (named after and Carlos Simpson) is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.

AttributesValues
rdf:type
rdfs:label
  • Nonabelian Hodge correspondence (en)
rdfs:comment
  • In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence (named after and Carlos Simpson) is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold. (en)
rdfs:seeAlso
name
  • Nonabelian Hodge theorem (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence (named after and Carlos Simpson) is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold. The theorem can be considered a vast generalisation of the Narasimhan–Seshadri theorem which defines a correspondence between stable vector bundles and unitary representations of the fundamental group of a compact Riemann surface. In fact the Narasimhan–Seshadri theorem may be obtained as a special case of the nonabelian Hodge correspondence by setting the Higgs field to zero. (en)
math statement
  • A Higgs bundle has a Hermitian Yang–Mills metric if and only if it is polystable. This metric is a harmonic metric, and therefore arises from a semisimple representation of the fundamental group, if and only if the Chern classes and vanish. Furthermore, a Higgs bundle is stable if and only if it admits an irreducible Hermitian Yang–Mills connection, and therefore comes from an irreducible representation of the fundamental group. (en)
  • There are homeomorphisms of moduli spaces which restrict to homeomorphisms . (en)
  • A Higgs bundle arises from a semisimple representation of the fundamental group if and only if it is polystable. Furthermore it arises from an irreducible representation if and only if it is stable. (en)
  • A representation of the fundamental group is semisimple if and only if the flat vector bundle admits a harmonic metric. Furthermore the representation is irreducible if and only if the flat vector bundle is irreducible. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software