About: Noncrossing partition     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Unit108189659, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5t9ivVeC7c

In combinatorial mathematics, the topic of noncrossing partitions has assumed some importance because of (among other things) its application to the theory of free probability. The number of noncrossing partitions of a set of n elements is the nth Catalan number. The number of noncrossing partitions of an n-element set with k blocks is found in the Narayana number triangle.

AttributesValues
rdf:type
rdfs:label
  • Nicht-kreuzende Partition (de)
  • Partition non croisée (fr)
  • 非交差分割 (ja)
  • Noncrossing partition (en)
rdfs:comment
  • Nicht-kreuzende Partitionen wurden von Germain Kreweras in der Kombinatorik eingeführt und spielen seitdem in verschiedenen mathematischen Gebieten eine wichtige Rolle. Insbesondere sind sie in der freien Wahrscheinlichkeitstheorie von großer Bedeutung. (de)
  • In combinatorial mathematics, the topic of noncrossing partitions has assumed some importance because of (among other things) its application to the theory of free probability. The number of noncrossing partitions of a set of n elements is the nth Catalan number. The number of noncrossing partitions of an n-element set with k blocks is found in the Narayana number triangle. (en)
  • En mathématiques, une partition non croisée est une partition d'un ensemble fini en blocs qui ne se croisent pas. (fr)
  • 非交差分割とは、集合の分割の内、「集合の要素を円状に並べ、同じ部分集合に属する要素を頂点とした多角形同士が交差しない」分割を指す。特に組合せ数学で重要である。 非交差分割の組み合わせの数は、その要素の数に対応するカタラン数で表される。k個の集合に分割する、n要素の集合の非交差分割の数は、N(n, k) である。 (ja)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Noncrossing_partitions_5.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Noncrossing_partitions_4;_Hasse.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
thumbnail
has abstract
  • Nicht-kreuzende Partitionen wurden von Germain Kreweras in der Kombinatorik eingeführt und spielen seitdem in verschiedenen mathematischen Gebieten eine wichtige Rolle. Insbesondere sind sie in der freien Wahrscheinlichkeitstheorie von großer Bedeutung. (de)
  • In combinatorial mathematics, the topic of noncrossing partitions has assumed some importance because of (among other things) its application to the theory of free probability. The number of noncrossing partitions of a set of n elements is the nth Catalan number. The number of noncrossing partitions of an n-element set with k blocks is found in the Narayana number triangle. (en)
  • En mathématiques, une partition non croisée est une partition d'un ensemble fini en blocs qui ne se croisent pas. (fr)
  • 非交差分割とは、集合の分割の内、「集合の要素を円状に並べ、同じ部分集合に属する要素を頂点とした多角形同士が交差しない」分割を指す。特に組合せ数学で重要である。 非交差分割の組み合わせの数は、その要素の数に対応するカタラン数で表される。k個の集合に分割する、n要素の集合の非交差分割の数は、N(n, k) である。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 71 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software