About: Ostwald's rule     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FOstwald%27s_rule&invfp=IFP_OFF&sas=SAME_AS_OFF

In materials science, Ostwald's rule or Ostwald's step rule, conceived by Wilhelm Ostwald, describes the formation of polymorphs. The rule states that usually the less stable polymorph crystallizes first. Unstable polymorphs more closely resemble the state in solution, and thus are kinetically advantaged. From hot water, metastable, fibrous crystals of benzamide appear first, later to spontaneously convert to the more stable rhombic polymorph. Another example is magnesium carbonate, which more readily forms dolomite. A dramatic example is phosphorus, which upon sublimation first forms the less stable white phosphorus, which only slowly polymerizes to the red allotrope. This is notably the case for the anatase polymorph of titanium dioxide, which having a lower surface energy is commonly th

AttributesValues
rdfs:label
  • Ostwald's rule (en)
rdfs:comment
  • In materials science, Ostwald's rule or Ostwald's step rule, conceived by Wilhelm Ostwald, describes the formation of polymorphs. The rule states that usually the less stable polymorph crystallizes first. Unstable polymorphs more closely resemble the state in solution, and thus are kinetically advantaged. From hot water, metastable, fibrous crystals of benzamide appear first, later to spontaneously convert to the more stable rhombic polymorph. Another example is magnesium carbonate, which more readily forms dolomite. A dramatic example is phosphorus, which upon sublimation first forms the less stable white phosphorus, which only slowly polymerizes to the red allotrope. This is notably the case for the anatase polymorph of titanium dioxide, which having a lower surface energy is commonly th (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In materials science, Ostwald's rule or Ostwald's step rule, conceived by Wilhelm Ostwald, describes the formation of polymorphs. The rule states that usually the less stable polymorph crystallizes first. Unstable polymorphs more closely resemble the state in solution, and thus are kinetically advantaged. From hot water, metastable, fibrous crystals of benzamide appear first, later to spontaneously convert to the more stable rhombic polymorph. Another example is magnesium carbonate, which more readily forms dolomite. A dramatic example is phosphorus, which upon sublimation first forms the less stable white phosphorus, which only slowly polymerizes to the red allotrope. This is notably the case for the anatase polymorph of titanium dioxide, which having a lower surface energy is commonly the first phase to form by crystallisation from amorphous precursors or solutions despite being metastable, with rutile being the equilibrium phase at all temperatures and pressures. Ostwald suggested that the solid first formed on crystallisation of a solution or a melt is the least stable polymorph. This can be explained on the basis of irreversible thermodynamics, structural relationships, or a combined consideration of statistical thermodynamics and structural variation with temperature. Ostwald's rule is not a universal law but a common tendency observed in nature. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software