About: Overspill     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FOverspill&invfp=IFP_OFF&sas=SAME_AS_OFF

In nonstandard analysis, a branch of mathematics, overspill (referred to as overflow by Goldblatt (1998, p. 129)) is a widely used proof technique. It is based on the fact that the set of standard natural numbers N is not an internal subset of the internal set *N of hypernatural numbers. By applying the induction principle for the standard integers N and the transfer principle we get the principle of internal induction: For any internal subset A of *N, if 1. * 1 is an element of A, and 2. * for every element n of A, n + 1 also belongs to A, then A = *N In particular:

AttributesValues
rdfs:label
  • Overspill (en)
rdfs:comment
  • In nonstandard analysis, a branch of mathematics, overspill (referred to as overflow by Goldblatt (1998, p. 129)) is a widely used proof technique. It is based on the fact that the set of standard natural numbers N is not an internal subset of the internal set *N of hypernatural numbers. By applying the induction principle for the standard integers N and the transfer principle we get the principle of internal induction: For any internal subset A of *N, if 1. * 1 is an element of A, and 2. * for every element n of A, n + 1 also belongs to A, then A = *N In particular: (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In nonstandard analysis, a branch of mathematics, overspill (referred to as overflow by Goldblatt (1998, p. 129)) is a widely used proof technique. It is based on the fact that the set of standard natural numbers N is not an internal subset of the internal set *N of hypernatural numbers. By applying the induction principle for the standard integers N and the transfer principle we get the principle of internal induction: For any internal subset A of *N, if 1. * 1 is an element of A, and 2. * for every element n of A, n + 1 also belongs to A, then A = *N If N were an internal set, then instantiating the internal induction principle with N, it would follow N = *N which is known not to be the case. The overspill principle has a number of useful consequences: * The set of standard hyperreals is not internal. * The set of bounded hyperreals is not internal. * The set of infinitesimal hyperreals is not internal. In particular: * If an internal set contains all infinitesimal non-negative hyperreals, it contains a positive non-infinitesimal (or appreciable) hyperreal. * If an internal set contains N it contains an unlimited (infinite) element of *N. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 57 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software