About: Paneitz operator     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDifferentialOperators, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPaneitz_operator&invfp=IFP_OFF&sas=SAME_AS_OFF

In the mathematical field of differential geometry, the Paneitz operator is a fourth-order differential operator defined on a Riemannian manifold of dimension n. It is named after , who discovered it in 1983, and whose preprint was later published posthumously in . In fact, the same operator was found earlier in the context of conformal supergravity by and in 1982(Phys Lett B 110 (1982) 117 and Nucl Phys B 1982 (1982) 157 ).It is given by the formula where Δ is the positive Laplacian. In four dimensions this yields the .

AttributesValues
rdf:type
rdfs:label
  • Paneitz operator (en)
rdfs:comment
  • In the mathematical field of differential geometry, the Paneitz operator is a fourth-order differential operator defined on a Riemannian manifold of dimension n. It is named after , who discovered it in 1983, and whose preprint was later published posthumously in . In fact, the same operator was found earlier in the context of conformal supergravity by and in 1982(Phys Lett B 110 (1982) 117 and Nucl Phys B 1982 (1982) 157 ).It is given by the formula where Δ is the positive Laplacian. In four dimensions this yields the . (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In the mathematical field of differential geometry, the Paneitz operator is a fourth-order differential operator defined on a Riemannian manifold of dimension n. It is named after , who discovered it in 1983, and whose preprint was later published posthumously in . In fact, the same operator was found earlier in the context of conformal supergravity by and in 1982(Phys Lett B 110 (1982) 117 and Nucl Phys B 1982 (1982) 157 ).It is given by the formula where Δ is the Laplace–Beltrami operator, d is the exterior derivative, δ is its formal adjoint, V is the Schouten tensor, J is the trace of the Schouten tensor, and the dot denotes tensor contraction on either index. Here Q is the scalar invariant where Δ is the positive Laplacian. In four dimensions this yields the . The operator is especially important in conformal geometry, because in a suitable sense it depends only on the conformal structure. Another operator of this kind is the conformal Laplacian. But, whereas the conformal Laplacian is second-order, with leading symbol a multiple of the Laplace–Beltrami operator, the Paneitz operator is fourth-order, with leading symbol the square of the Laplace–Beltrami operator. The Paneitz operator is conformally invariant in the sense that it sends conformal densities of weight 2 − n/2 to conformal densities of weight −2 − n/2. Concretely, using the canonical trivialization of the density bundles in the presence of a metric, the Paneitz operator P can be represented in terms of a representative the Riemannian metric g as an ordinary operator on functions that transforms according under a conformal change g ↦ Ω2g according to the rule The operator was originally derived by working out specifically the lower-order correction terms in order to ensure conformal invariance. Subsequent investigations have situated the Paneitz operator into a hierarchy of analogous conformally invariant operators on densities: the GJMS operators. The Paneitz operator has been most thoroughly studied in dimension four where it appears naturally in connection with extremal problems for the functional determinant of the Laplacian (via the Polyakov formula; see ). In dimension four only, the Paneitz operator is the "critical" GJMS operator, meaning that there is a residual scalar piece (the ) that can only be recovered by asymptotic analysis. The Paneitz operator appears in extremal problems for the Moser–Trudinger inequality in dimension four as well (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software