Paris' law (also known as the Paris–Erdogan equation) is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity seen in a loading cycle. The Paris equation is
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Paris' law (en)
- Lei de Paris Erdogan (pt)
- Paris lag (sv)
|
rdfs:comment
| - Paris lag beskriver hur mycket en spricka i ett material växer för varje lastcykel, det vill säga när belastningen omväxlande ökar och minskar. Den cykliska lasten orsakar en hög spänningsintensitet i sprickspetsen vilket gör att sprickan växer. , där är sprickans längd och är antalet lastcykler. och är materialkonstanter medan är spänningsintensiteten. Spänningsintensiteten beror på den cykliska lasten och beräknas enligt följande: , där och är den största respektive minsta spänningsintensiteten. (sv)
- Paris' law (also known as the Paris–Erdogan equation) is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity seen in a loading cycle. The Paris equation is (en)
- Lei de Paris Erdogan (também conhecida como Lei de Paris-Erdogan) relaciona o fator intensidade de tensão com o crescimento sub crítico de trincas, sob um regime de fadiga. Assim, é o modelo mais popular de crescimento de trinca em fadiga usado na ciência dos materiais e mecânica da fratura. A fórmula básica é , , onde é o fator intensidade de tensão máximo e é o mínimo. (pt)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - Paris' law (also known as the Paris–Erdogan equation) is a crack growth equation that gives the rate of growth of a fatigue crack. The stress intensity factor characterises the load around a crack tip and the rate of crack growth is experimentally shown to be a function of the range of stress intensity seen in a loading cycle. The Paris equation is where is the crack length and is the fatigue crack growth for a load cycle . The material coefficients and are obtained experimentally and also depend on environment, frequency, temperature and stress ratio. The stress intensity factor range has been found to correlate the rate of crack growth from a variety of different conditions and is the difference between the maximum and minimum stress intensity factors in a load cycle and is defined as Being a power law relationship between the crack growth rate during cyclic loading and the range of the stress intensity factor, the Paris–Erdogan equation can be visualized as a straight line on a log-log plot, where the x-axis is denoted by the range of the stress intensity factor and the y-axis is denoted by the crack growth rate. The equation gives the growth for a single cycle. Single cycles can be readily counted for constant-amplitude loading. Additional cycle identification techniques such as rainflow-counting algorithm need to be used to extract the equivalent constant-amplitude cycles from a variable-amplitude loading sequence. (en)
- Paris lag beskriver hur mycket en spricka i ett material växer för varje lastcykel, det vill säga när belastningen omväxlande ökar och minskar. Den cykliska lasten orsakar en hög spänningsintensitet i sprickspetsen vilket gör att sprickan växer. , där är sprickans längd och är antalet lastcykler. och är materialkonstanter medan är spänningsintensiteten. Spänningsintensiteten beror på den cykliska lasten och beräknas enligt följande: , där och är den största respektive minsta spänningsintensiteten. (sv)
- Lei de Paris Erdogan (também conhecida como Lei de Paris-Erdogan) relaciona o fator intensidade de tensão com o crescimento sub crítico de trincas, sob um regime de fadiga. Assim, é o modelo mais popular de crescimento de trinca em fadiga usado na ciência dos materiais e mecânica da fratura. A fórmula básica é , onde a é o comprimento da trinca e N o número de ciclos. Assim, o termo na esquerda da equação ,que é conhecido como taxa de propagação de trinca, representa o crescimento infinitesimal do comprimento da trinca por ciclo realizado. Já no lado direito o C e m são constantes do material, e é a variação do fator intensidade de tensão, i.e., A diferença entre o fator intensidade de tensão no carregamento máximo e mínimo. , onde é o fator intensidade de tensão máximo e é o mínimo. (pt)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is notable works
of | |
is foaf:primaryTopic
of | |