About: Partial fractions in integration     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3SSFs4GNZ5

AttributesValues
rdfs:label
  • Integració de fraccions racionals (ca)
  • Integrace racionálních funkcí (cs)
  • Partial fractions in integration (en)
  • Интегрирование рациональных функций (ru)
  • 部分分式积分法 (zh)
  • Розкладання дробів при інтегруванні (uk)
rdfs:comment
  • Интегрирование рациональных функций — операция взятия неопределённого интеграла от рациональной функции. Известно, что первообразная рациональной функции выражается в виде суммы рациональных функций, натуральных логарифмов и арктангенсов. Обычно такое интегрирование выполняется при помощи разложения дроби на простейшие, однако иногда могут использоваться и другие способы, например метод Остроградского. (ru)
  • 部分分式积分法,即通过将原函数拆分为部分分式来简化积分步骤,是计算积分时的一个常用技巧。任何有理函数都可拆分为多个多项式和部分分式的和,每个部分分式中的分子次数小于分母,然后根据积分表及利用其他积分技巧,将每个部分分式积分,就得到原函数的积分。 (zh)
  • La integració de les funcions racionals (per trobar la seva funció primitiva) es fa descomponent la fracció racional en la suma d'un polinomi més una sèrie de fraccions racionals amb el denominador de grau dos com a màxim i després integrant cada fracció. Aquest procediment s'anomena descomposició en fraccions parcials. Sia , on P i Q són polinomis, si el grau de P és més gran que el grau de Q, es divideix P entre Q i s'escriu: Llavors es descompon en una suma de fraccions racionals de la forma: (ca)
  • Integrace racionálních funkcí se týká neurčitého integrálu tvaru , kde jsou polynomy. Racionální funkci je vždy možné rozložit na součet polynomu a ryze racionální lomené funkce. Racionální lomenou funkci vyjádříme jako součet parciálních zlomků. Vzhledem k tomu, že integrace polynomu je triviální, zbývá řešit integraci lomené racionální funkce, která se však v nejobecnějším případě redukuje na řešení integrálu pro přirozené číslo a , a integrálu pro přirozené číslo , přičemž diskriminant D výrazu je záporný. Pro integrál dostaneme pro aplikováním základních integračních vztahů výraz pro . , , (cs)
  • В інтегруванні, розкладання дробів дозволяє інтегрувати раціональні функції. Будь-яка раціональна функція може бути представлена у вигляді суми деякого многочлена і деякого числа дробових функцій. Кожен дріб має знаменник у вигляді многочлена першого і другого степеня, до того ж многочлен в знаменнику, в свою чергу, також може бути піднесеним до деякого додатного цілого степеня. (У випадку комплексної змінної, знаменники є многочленами першого степеня, і ці многочлени можуть бути піднесені до цілого додатного степеня). Якщо знаменник є многочленом першого степеня, піднесений в деякий цілий додатній степінь, то чисельник дробу є постійним числом. Якщо знаменник є многочленом другого степеня (або деякого цілого додатного степеня такого многочлена), тоді чисельник є многочленом першого степен (uk)
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Wikipage redirect
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • La integració de les funcions racionals (per trobar la seva funció primitiva) es fa descomponent la fracció racional en la suma d'un polinomi més una sèrie de fraccions racionals amb el denominador de grau dos com a màxim i després integrant cada fracció. Aquest procediment s'anomena descomposició en fraccions parcials. Sia , on P i Q són polinomis, si el grau de P és més gran que el grau de Q, es divideix P entre Q i s'escriu: Llavors es descompon en una suma de fraccions racionals de la forma: Per a obtenir aquesta descomposició, es troben les arrels de Q, es descompon Q i es planteja una equació on les A, p i q són incògnites, en plantejar que el polinomi sigui igual al numerador, cada terme ha de ser igual, de forma que s'obté un sistema d'equacions lineals amb tantes equacions i tantes incògnites com el grau del polinomi del denominador. Llavors el problema queda reduït a integrar cada un dels diferents tipus de fraccions que han quedat. (ca)
  • Integrace racionálních funkcí se týká neurčitého integrálu tvaru , kde jsou polynomy. Racionální funkci je vždy možné rozložit na součet polynomu a ryze racionální lomené funkce. Racionální lomenou funkci vyjádříme jako součet parciálních zlomků. Vzhledem k tomu, že integrace polynomu je triviální, zbývá řešit integraci lomené racionální funkce, která se však v nejobecnějším případě redukuje na řešení integrálu pro přirozené číslo a , a integrálu pro přirozené číslo , přičemž diskriminant D výrazu je záporný. Pro integrál dostaneme pro aplikováním základních integračních vztahů výraz pro . Pro pak pro ze základních vztahů plyne pro . Integrál pro lze převést na integrál pomocí substituce , kde a . Pomocí základních integračních vztahů pak dostaneme Integrál pro a upravíme tak, aby v čitateli byl (až na aditivní konstantu) násobek derivace jmenovatele, což umožňuje úpravu Řešení prvního integrálu lze najít podle základních integračních vztahů a druhý integrál je integrál typu pro . Využijeme-li toho, že a současně pak dostáváme řešení kde je integrál typu pro . Integrál pro lze pomocí substituce a upravit na tvar Řešíme-li poslední integrál metodou per partes, dostaneme rekurentní vztah pro . Řešení integrálu lze pak vyjádřit prostřednictvím integrálu , což je však integrál typu pro . U integrálů , u nichž je použijeme . Čitatele lze pak vyjádřit ve tvaru . Řešení má pak tvar , kde je integrál vyjádřený pomocí dříve uvedeného rekurentního vztahu. Při integraci racionální funkci tedy nejdříve vyjádříme tuto funkci jako součet polynomu, který lze ihned integrovat, a racionální lomené funkce, kterou rozložíme na parciální zlomky. Poté integrujeme parciální zlomky, čímž získáme celé řešení integrálu původní racionální funkce. (cs)
  • Интегрирование рациональных функций — операция взятия неопределённого интеграла от рациональной функции. Известно, что первообразная рациональной функции выражается в виде суммы рациональных функций, натуральных логарифмов и арктангенсов. Обычно такое интегрирование выполняется при помощи разложения дроби на простейшие, однако иногда могут использоваться и другие способы, например метод Остроградского. (ru)
  • 部分分式积分法,即通过将原函数拆分为部分分式来简化积分步骤,是计算积分时的一个常用技巧。任何有理函数都可拆分为多个多项式和部分分式的和,每个部分分式中的分子次数小于分母,然后根据积分表及利用其他积分技巧,将每个部分分式积分,就得到原函数的积分。 (zh)
  • В інтегруванні, розкладання дробів дозволяє інтегрувати раціональні функції. Будь-яка раціональна функція може бути представлена у вигляді суми деякого многочлена і деякого числа дробових функцій. Кожен дріб має знаменник у вигляді многочлена першого і другого степеня, до того ж многочлен в знаменнику, в свою чергу, також може бути піднесеним до деякого додатного цілого степеня. (У випадку комплексної змінної, знаменники є многочленами першого степеня, і ці многочлени можуть бути піднесені до цілого додатного степеня). Якщо знаменник є многочленом першого степеня, піднесений в деякий цілий додатній степінь, то чисельник дробу є постійним числом. Якщо знаменник є многочленом другого степеня (або деякого цілого додатного степеня такого многочлена), тоді чисельник є многочленом першого степеня. Рішення Ісаака Барроу для інтегралу від секансу було першим випадком використання розкладання дробів в інтегруванні. (uk)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software