About: Physical knot theory     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Book, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPhysical_knot_theory&invfp=IFP_OFF&sas=SAME_AS_OFF

Physical knot theory is the study of mathematical models of knotting phenomena, often motivated by considerations from biology, chemistry, and physics (Kauffman 1991). Physical knot theory is used to study how geometric and topological characteristics of filamentary structures, such as magnetic flux tubes, vortex filaments, polymers, DNAs, influence their physical properties and functions. It has applications in various fields of science, including topological fluid dynamics, structural complexity analysis and DNA biology (Kauffman 1991, Ricca 1998).

AttributesValues
rdf:type
rdfs:label
  • Physical knot theory (en)
rdfs:comment
  • Physical knot theory is the study of mathematical models of knotting phenomena, often motivated by considerations from biology, chemistry, and physics (Kauffman 1991). Physical knot theory is used to study how geometric and topological characteristics of filamentary structures, such as magnetic flux tubes, vortex filaments, polymers, DNAs, influence their physical properties and functions. It has applications in various fields of science, including topological fluid dynamics, structural complexity analysis and DNA biology (Kauffman 1991, Ricca 1998). (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Physical knot theory is the study of mathematical models of knotting phenomena, often motivated by considerations from biology, chemistry, and physics (Kauffman 1991). Physical knot theory is used to study how geometric and topological characteristics of filamentary structures, such as magnetic flux tubes, vortex filaments, polymers, DNAs, influence their physical properties and functions. It has applications in various fields of science, including topological fluid dynamics, structural complexity analysis and DNA biology (Kauffman 1991, Ricca 1998). Traditional knot theory models a knot as a simple closed loop in three-dimensional space. Such a knot has no thickness or physical properties such as tension or friction. Physical knot theory incorporates more realistic models. The traditional model is also studied but with an eye toward properties of specific embeddings ("conformations") of the circle. Such properties include ropelength and various knot energies (O’Hara 2003). Most of the work discussed in this article and in the references below is not concerned with knots tied in physical pieces of rope. For the more specific physics of such knots, see Knot: Physical theory of friction knots. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software