In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences (defined below) to the category of abelian groups (in category theory, “presheaf” is another term for a contravariant functor). A presheaf F with transfers is said to be -homotopy invariant if for every X. For example, Chow groups as well as motivic cohomology groups form presheaves with transfers.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Presheaf with transfers (en)
|
rdfs:comment
| - In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences (defined below) to the category of abelian groups (in category theory, “presheaf” is another term for a contravariant functor). A presheaf F with transfers is said to be -homotopy invariant if for every X. For example, Chow groups as well as motivic cohomology groups form presheaves with transfers. (en)
|
rdfs:seeAlso
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences (defined below) to the category of abelian groups (in category theory, “presheaf” is another term for a contravariant functor). When a presheaf F with transfers is restricted to the subcategory of smooth separated schemes, it can be viewed as a presheaf on the category with extra maps , not coming from morphisms of schemes but also from finite correspondences from X to Y A presheaf F with transfers is said to be -homotopy invariant if for every X. For example, Chow groups as well as motivic cohomology groups form presheaves with transfers. (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |