In algebra, a primitive element of a co-algebra C (over an element g) is an element x that satisfies where is the co-multiplication and g is an element of C that maps to the multiplicative identity 1 of the base field under the co-unit (g is called group-like). If C is a bi-algebra, i.e., a co-algebra that is also an algebra (with certain compatibility conditions satisfied), then one usually takes g to be 1, the multiplicative identity of C. The bi-algebra C is said to be primitively generated if it is generated by primitive elements (as an algebra).
Attributes | Values |
---|
rdfs:label
| - Primitive element (co-algebra) (en)
|
rdfs:comment
| - In algebra, a primitive element of a co-algebra C (over an element g) is an element x that satisfies where is the co-multiplication and g is an element of C that maps to the multiplicative identity 1 of the base field under the co-unit (g is called group-like). If C is a bi-algebra, i.e., a co-algebra that is also an algebra (with certain compatibility conditions satisfied), then one usually takes g to be 1, the multiplicative identity of C. The bi-algebra C is said to be primitively generated if it is generated by primitive elements (as an algebra). (en)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In algebra, a primitive element of a co-algebra C (over an element g) is an element x that satisfies where is the co-multiplication and g is an element of C that maps to the multiplicative identity 1 of the base field under the co-unit (g is called group-like). If C is a bi-algebra, i.e., a co-algebra that is also an algebra (with certain compatibility conditions satisfied), then one usually takes g to be 1, the multiplicative identity of C. The bi-algebra C is said to be primitively generated if it is generated by primitive elements (as an algebra). If C is a bi-algebra, then the set of primitive elements form a Lie algebra with the usual commutator bracket (graded commutator if C is graded). If A is a connected graded cocommutative Hopf algebra over a field of characteristic zero, then the Milnor–Moore theorem states the universal enveloping algebra of the graded Lie algebra of primitive elements of A is isomorphic to A. (This also holds under slightly weaker requirements.) (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |