About: Problem of the Nile     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FProblem_of_the_Nile&invfp=IFP_OFF&sas=SAME_AS_OFF

The problem of the Nile is a mathematical problem related to equal partitions of measures. The problem was first presented by Ronald Fisher in 1936–1938. It is presented by Dubins and Spanier in the following words: Formally, for each height h, there is a nonatomic measure vh on the land, which represents the land values when the height of the Nile is h. In general, there can be infinitely many different heights, and hence, infinitely many different measures. William Feller showed in 1938 that a solution for the general case might not exist.

AttributesValues
rdfs:label
  • Problem of the Nile (en)
rdfs:comment
  • The problem of the Nile is a mathematical problem related to equal partitions of measures. The problem was first presented by Ronald Fisher in 1936–1938. It is presented by Dubins and Spanier in the following words: Formally, for each height h, there is a nonatomic measure vh on the land, which represents the land values when the height of the Nile is h. In general, there can be infinitely many different heights, and hence, infinitely many different measures. William Feller showed in 1938 that a solution for the general case might not exist. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The problem of the Nile is a mathematical problem related to equal partitions of measures. The problem was first presented by Ronald Fisher in 1936–1938. It is presented by Dubins and Spanier in the following words: "Each year, the Nile would flood, thereby irrigating or perhaps devastating parts of the agricultural land of a predynastic Egyptian village. The value of different portions of the land would depend upon the height of the flood. In question was the possibility of giving to each of the k residents, piece of land whose value would be 1/k of the total land value, no matter what the height of the flood." Formally, for each height h, there is a nonatomic measure vh on the land, which represents the land values when the height of the Nile is h. In general, there can be infinitely many different heights, and hence, infinitely many different measures. William Feller showed in 1938 that a solution for the general case might not exist. When the number of different heights (= measures) is finite, a solution always exists. This was first noted by Jerzy Neyman in 1946, and proved as a corollary of the Dubins–Spanier theorems in 1961. The problem in this case is called the exact division or consensus division problem. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software