About: Projective unitary group     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Group100031264, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/8PgUi2v8ZK

In mathematics, the projective unitary group PU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars.Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. Abstractly, given a Hermitian space V, the group PU(V) is the image of the unitary group U(V) in the automorphism group of the projective space P(V).

AttributesValues
rdf:type
rdfs:label
  • Projective unitary group (en)
rdfs:comment
  • In mathematics, the projective unitary group PU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars.Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. Abstractly, given a Hermitian space V, the group PU(V) is the image of the unitary group U(V) in the automorphism group of the projective space P(V). (en)
rdfs:seeAlso
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/PSU-PU.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In mathematics, the projective unitary group PU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars.Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. In terms of matrices, elements of U(n) are complex n×n unitary matrices, and elements of the center are diagonal matrices equal to eiθ multiplied by the identity matrix. Thus, elements of PU(n) correspond to equivalence classes of unitary matrices under multiplication by a constant phase θ. Abstractly, given a Hermitian space V, the group PU(V) is the image of the unitary group U(V) in the automorphism group of the projective space P(V). (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software