About: Quasi-exact solvability     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FQuasi-exact_solvability&invfp=IFP_OFF&sas=SAME_AS_OFF

A linear differential operator L is called quasi-exactly-solvable (QES) if it has a finite-dimensional invariant subspace of functions such that where n is a dimension of . There are two important cases: The most studied cases are one-dimensional -Lie-algebraic quasi-exactly-solvable (Schrödinger) operators. The best known example is the sextic QES anharmonic oscillator with the Hamiltonian where (n+1) eigenstates of positive (negative) parity can be found algebraically. Their eigenfunctions are of the form

AttributesValues
rdfs:label
  • Quasi-exact solvability (en)
rdfs:comment
  • A linear differential operator L is called quasi-exactly-solvable (QES) if it has a finite-dimensional invariant subspace of functions such that where n is a dimension of . There are two important cases: The most studied cases are one-dimensional -Lie-algebraic quasi-exactly-solvable (Schrödinger) operators. The best known example is the sextic QES anharmonic oscillator with the Hamiltonian where (n+1) eigenstates of positive (negative) parity can be found algebraically. Their eigenfunctions are of the form (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • A linear differential operator L is called quasi-exactly-solvable (QES) if it has a finite-dimensional invariant subspace of functions such that where n is a dimension of . There are two important cases: 1. * is the space of multivariate polynomials of degree not higher than some integer number; and 2. * is a subspace of a Hilbert space. Sometimes, the functional space is isomorphic to the finite-dimensional representation space of a Lie algebra g of first-order differential operators. In this case, the operator L is called a g-Lie-algebraic Quasi-Exactly-Solvable operator. Usually, one can indicate basis where L has block-triangular form. If the operator L is of the second order and has the form of the Schrödinger operator, it is called a Quasi-Exactly-Solvable Schrödinger operator. The most studied cases are one-dimensional -Lie-algebraic quasi-exactly-solvable (Schrödinger) operators. The best known example is the sextic QES anharmonic oscillator with the Hamiltonian where (n+1) eigenstates of positive (negative) parity can be found algebraically. Their eigenfunctions are of the form where is a polynomial of degree n and (energies) eigenvalues are roots of an algebraic equation of degree (n+1). In general, twelve families of one-dimensional QES problems are known, two of them characterized by elliptic potentials. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 55 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software