About: Radicial morphism     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FRadicial_morphism&invfp=IFP_OFF&sas=SAME_AS_OFF

In algebraic geometry, a morphism of schemes f: X → Y is called radicial or universally injective, if, for every field K the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for K algebraically closed. This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields k(f(x)) ⊂ k(x)

AttributesValues
rdfs:label
  • Radicial morphism (en)
rdfs:comment
  • In algebraic geometry, a morphism of schemes f: X → Y is called radicial or universally injective, if, for every field K the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for K algebraically closed. This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields k(f(x)) ⊂ k(x) (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In algebraic geometry, a morphism of schemes f: X → Y is called radicial or universally injective, if, for every field K the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for K algebraically closed. This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields k(f(x)) ⊂ k(x) is radicial, i.e. purely inseparable. It is also equivalent to every base change of f being injective on the underlying topological spaces. (Thus the term universally injective.) Radicial morphisms are stable under composition, products and base change. If gf is radicial, so is f. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software