About: Ramanujan's congruences     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2nEoxvUvc6

In mathematics, Ramanujan's congruences are some remarkable congruences for the partition function p(n). The mathematician Srinivasa Ramanujan discovered the congruences This means that: * If a number is 4 more than a multiple of 5, i.e. it is in the sequence4, 9, 14, 19, 24, 29, . . .then the number of its partitions is a multiple of 5. * If a number is 5 more than a multiple of 7, i.e. it is in the sequence5, 12, 19, 26, 33, 40, . . .then the number of its partitions is a multiple of 7. * If a number is 6 more than a multiple of 11, i.e. it is in the sequence6, 17, 28, 39, 50, 61, . . .then the number of its partitions is a multiple of 11.

AttributesValues
rdfs:label
  • Congruences de Ramanujan (fr)
  • ラマヌジャンの合同式 (ja)
  • Ramanujan's congruences (en)
rdfs:comment
  • In mathematics, Ramanujan's congruences are some remarkable congruences for the partition function p(n). The mathematician Srinivasa Ramanujan discovered the congruences This means that: * If a number is 4 more than a multiple of 5, i.e. it is in the sequence4, 9, 14, 19, 24, 29, . . .then the number of its partitions is a multiple of 5. * If a number is 5 more than a multiple of 7, i.e. it is in the sequence5, 12, 19, 26, 33, 40, . . .then the number of its partitions is a multiple of 7. * If a number is 6 more than a multiple of 11, i.e. it is in the sequence6, 17, 28, 39, 50, 61, . . .then the number of its partitions is a multiple of 11. (en)
  • 整数分割において、ラマヌジャンの合同式(ラマヌジャンのごうどうしき、英: Ramanujan's congruences)は、分割数が満たす整除の関係式。インドの数学者シュリニヴァーサ・ラマヌジャンに因む。ラマヌジャンはイギリスの数学者ゴッドフレイ・ハロルド・ハーディの勧めで渡英し、ハーディとの共同研究の中で分割数を研究した。 (ja)
  • En mathématiques, les congruences de Ramanujan sont des congruences remarquables à propos de la fonction de partition p(n). Le mathématicien Srinivasa Ramanujan a découvert les congruences: Cela signifie que (fr)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En mathématiques, les congruences de Ramanujan sont des congruences remarquables à propos de la fonction de partition p(n). Le mathématicien Srinivasa Ramanujan a découvert les congruences: Cela signifie que * Si un nombre est congru à 4 modulo 5, c'est-à-dire qu'il est compris dans la suite4, 9, 14, 19, 24, 29, . . .alors le nombre de ses partitions est un multiple de 5. * Si un nombre est congru à 5 modulo 7, c'est-à-dire qu'il est compris dans la suite5, 12, 19, 26, 33, 40, . . .alors le nombre de ses partitions est un multiple de 7. * Si un nombre est congru à 6 modulo 11, c'est-à-dire qu'il est compris dans la suite6, 17, 28, 39, 50, 61, . . .alors le nombre de ses partitions est un multiple de 11. (fr)
  • In mathematics, Ramanujan's congruences are some remarkable congruences for the partition function p(n). The mathematician Srinivasa Ramanujan discovered the congruences This means that: * If a number is 4 more than a multiple of 5, i.e. it is in the sequence4, 9, 14, 19, 24, 29, . . .then the number of its partitions is a multiple of 5. * If a number is 5 more than a multiple of 7, i.e. it is in the sequence5, 12, 19, 26, 33, 40, . . .then the number of its partitions is a multiple of 7. * If a number is 6 more than a multiple of 11, i.e. it is in the sequence6, 17, 28, 39, 50, 61, . . .then the number of its partitions is a multiple of 11. (en)
  • 整数分割において、ラマヌジャンの合同式(ラマヌジャンのごうどうしき、英: Ramanujan's congruences)は、分割数が満たす整除の関係式。インドの数学者シュリニヴァーサ・ラマヌジャンに因む。ラマヌジャンはイギリスの数学者ゴッドフレイ・ハロルド・ハーディの勧めで渡英し、ハーディとの共同研究の中で分割数を研究した。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software