About: Rayleigh flow     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FRayleigh_flow&invfp=IFP_OFF&sas=SAME_AS_OFF

Rayleigh flow refers to frictionless, non-adiabatic flow through a constant area duct where the effect of heat addition or rejection is considered. Compressibility effects often come into consideration, although the Rayleigh flow model certainly also applies to incompressible flow. For this model, the duct area remains constant and no mass is added within the duct. Therefore, unlike Fanno flow, the stagnation temperature is a variable. The heat addition causes a decrease in stagnation pressure, which is known as the Rayleigh effect and is critical in the design of combustion systems. Heat addition will cause both supersonic and subsonic Mach numbers to approach Mach 1, resulting in choked flow. Conversely, heat rejection decreases a subsonic Mach number and increases a supersonic Mach numb

AttributesValues
rdfs:label
  • Flujo de Rayleigh (es)
  • Flusso di Rayleigh (it)
  • Rayleigh flow (en)
rdfs:comment
  • El flujo de Rayleigh (así llamado por Lord Rayleigh) es un tipo de flujo compresible en conductos. Se caracteriza por no ser adiabático, absorbe o cede calor para mantener una sección de paso constante sin cambio en la masa que circula por ella y sin efecto de la fricción. Aunque el caso general es el compresible, se pueden aplicar los resultados también para el caso simplificado de flujo incompresible. Su planteamiento analítico parte de las premisas del modelo de gas perfecto. (es)
  • Rayleigh flow refers to frictionless, non-adiabatic flow through a constant area duct where the effect of heat addition or rejection is considered. Compressibility effects often come into consideration, although the Rayleigh flow model certainly also applies to incompressible flow. For this model, the duct area remains constant and no mass is added within the duct. Therefore, unlike Fanno flow, the stagnation temperature is a variable. The heat addition causes a decrease in stagnation pressure, which is known as the Rayleigh effect and is critical in the design of combustion systems. Heat addition will cause both supersonic and subsonic Mach numbers to approach Mach 1, resulting in choked flow. Conversely, heat rejection decreases a subsonic Mach number and increases a supersonic Mach numb (en)
  • Il flusso di Rayleigh è un modello matematico di flusso unidimensionale in condizioni stazionarie con scambio di calore con l'esterno, in condotti a sezione costante, dove le irreversibilità dovute all'attrito sono trascurate. Il flusso deve il suo nome a John Strutt, III barone Rayleigh. Analogamente al flusso di Fanno, il flusso di Rayleigh è non-isoentropico, in quanto reversibile ma non adiabatico a causa della presenza di calore scambiato con l'ambiente esterno. Infatti, scrivendo l'equazione del secondo principio della termodinamica: (it)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Fanno-Rayleigh_confrontation_graph.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Rayleigh_Line.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • El flujo de Rayleigh (así llamado por Lord Rayleigh) es un tipo de flujo compresible en conductos. Se caracteriza por no ser adiabático, absorbe o cede calor para mantener una sección de paso constante sin cambio en la masa que circula por ella y sin efecto de la fricción. Aunque el caso general es el compresible, se pueden aplicar los resultados también para el caso simplificado de flujo incompresible. Su planteamiento analítico parte de las premisas del modelo de gas perfecto. Debido a esta transferencia de calor, la (también llamada de estancamiento o total) cambia con el intercambio de calor. Esto particularmente lo diferencia de otros casos como el flujo de Fanno o el , donde la temperatura de remanso es constante. Este intercambio afecta también a la con lo que se denomina como efecto Rayleigh: el aumento de la temperatura genera una cambio de la densidad que para conservar el gasto másico altera la velocidad. Por conservación de la energía se produce una variación de presión. Así la adición de calor al flujo tenderá a llevar el flujo — sea este supersónico o subsónico — a Mach unitario, bloqueándolo. A la inversa, la cesión de calor al exterior tenderá a bajar el número de Mach si es subsónico y a aumentarlo si es supersónico. Se puede demostrar que para gas perfecto la máxima entropía ocurre para M=1. Este modelo es normalmente apropiado para describir el flujo en cámaras de combustión de ciclos Joule-Brayton, usados en motores de aviación y generación de energía eléctrica con turbina de gas. (es)
  • Rayleigh flow refers to frictionless, non-adiabatic flow through a constant area duct where the effect of heat addition or rejection is considered. Compressibility effects often come into consideration, although the Rayleigh flow model certainly also applies to incompressible flow. For this model, the duct area remains constant and no mass is added within the duct. Therefore, unlike Fanno flow, the stagnation temperature is a variable. The heat addition causes a decrease in stagnation pressure, which is known as the Rayleigh effect and is critical in the design of combustion systems. Heat addition will cause both supersonic and subsonic Mach numbers to approach Mach 1, resulting in choked flow. Conversely, heat rejection decreases a subsonic Mach number and increases a supersonic Mach number along the duct. It can be shown that for calorically perfect flows the maximum entropy occurs at M = 1. Rayleigh flow is named after John Strutt, 3rd Baron Rayleigh. (en)
  • Il flusso di Rayleigh è un modello matematico di flusso unidimensionale in condizioni stazionarie con scambio di calore con l'esterno, in condotti a sezione costante, dove le irreversibilità dovute all'attrito sono trascurate. Il flusso deve il suo nome a John Strutt, III barone Rayleigh. Analogamente al flusso di Fanno, il flusso di Rayleigh è non-isoentropico, in quanto reversibile ma non adiabatico a causa della presenza di calore scambiato con l'ambiente esterno. Infatti, scrivendo l'equazione del secondo principio della termodinamica: e, tenendo conto delle condizioni sopra ipotizzate, si evince che la variazione di entropia non è nulla . (it)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software