About: Reynolds transport theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPhysicsTheorems, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/1ZdezCVUA

In differential calculus, the Reynolds transport theorem (also known as the Leibniz–Reynolds transport theorem), or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics. Consider integrating f = f(x,t) over the time-dependent region Ω(t) that has boundary ∂Ω(t), then taking the derivative with respect to time:

AttributesValues
rdf:type
rdfs:label
  • Teorema del transport de Reynolds (ca)
  • Transportsatz (de)
  • Θεώρημα μεταφοράς Ρέινολντς (el)
  • Teorema del transporte de Reynolds (es)
  • Teorema del trasporto di Reynolds (it)
  • 레이놀즈 수송정리 (ko)
  • レイノルズの輸送定理 (ja)
  • Twierdzenie transportu Reynoldsa (pl)
  • Reynolds transport theorem (en)
  • Teorema de transporte de Reynolds (pt)
  • Reynolds transportteorem (sv)
  • 雷諾傳輸定理 (zh)
rdfs:comment
  • El teorema de transporte de Reynolds es un teorema fundamental utilizado en la formulación de las leyes básicas de la mecánica de fluidos,​ que relaciona la derivada lagrangiana de una integral de volumen de un sistema con una integral en derivadas eulerianas.​ (es)
  • Il teorema del trasporto di Reynolds permette di portare l'operazione di derivazione sotto il segno di integrale. È usato nella meccanica dei continui per studiare le variazioni nel tempo di una grandezza fisica associata ad un dominio. È usato ad esempio per dimostrare l'equazione di continuità in forma indefinita dei sistemi per ogni evoluzione dinamica. (it)
  • 레이놀즈 수송정리(Reynolds transport theorem)는 검사체적(Control Volume)을 정의하고 시스템에 적용되는 물리법칙을 검사체적에 적용하는 유체역학 이론이다. 여기서 시스템은 유체들(유체계) 또는 유체내에 물질을 포함할 수도 있다. 미적분학에서, 라이프니츠-레이놀즈 수송 정리(Leibniz-Reynolds transport theorem 이라고도 함) 또는 간단히 말하면 레이놀즈 정리는 '적분 부호하에서 미분'(differentiation under the integral sign)이라고도 하는 의 3차원 일반화이다. 정리는 (1842–1912)의 이름을 따서 명명되었다. 적분량의 미분을 재구성하는데 사용되며 연속체 역학의 기본 방정식을 공식화하는 데 유용하다. (ko)
  • レイノルズの輸送定理(レイノルズのゆそうていり)は、主に連続体力学で用いられる定理で、変形形状上の積分で表される物理量の物質時間導関数(物質時間微分)について成立する次の式のことである: (ja)
  • 雷諾傳輸定理也稱為萊布尼茲-雷諾傳輸定理或雷諾输运定理,是以積分符號內取微分聞名的的三維推廣。 雷諾傳輸定理得名自奧斯鮑恩·雷諾(1842–1912),用來調整積分量的微分,用來推導連續介質力學的基礎方程。 考慮在時變的區域積分,其邊界為,考慮上式對時間的微分: 若要求上述積分的導數,會有兩個問題,的時間相依性,及因動態的邊界而增加或減少的空間,雷諾傳輸定理提供了必要的框架。 (zh)
  • El teorema del transport de Reynolds, o simplement teorema de Reynolds, és un teorema analític que permet avaluar la velocitat de canvi de qualsevol propietat o característica d'un fluid examinant-ne el flux a través d'un volum de control. Aquest teorema va ser descobert per Osborne Reynolds (1842–1912) i a causa de la seva relació amb la llei integral de Leibniz, de Gottfried Wilhelm Leibniz (1646-1716), sovint al teorema de Reynolds també se l'ha anomenat teorema del transport de Leibniz-Reynolds. (ca)
  • Το θεώρημα μεταφοράς Ρέινολντς είναι ένα θεμελιώδες θεώρημα το οποίο χρησιμοποιείται στην τυποποίηση των βασικών νόμων διατήρησης μάζας, ορμής και ενέργειας στη . Το θεώρημα πήρε την ονομασία προς τιμήν του (1842–1912), ιδιαίτερα γνωστός για τη συμβολή του στην με τον προσδιορισμό του αριθμού Ρέινολντς. Οι συναρτήσεις λαμβάνονται ως μονότιμες και τουλάχιστον δις διαφορίσιμες. Υποθέτουμε ότι οι μετασχηματισμοί είναι ένας προς ένα ούτως ώστε οι αντίστροφοι μετασχηματισμοί να υπάρχουν και να είναι τουλάχιστον δις διαφορίσιμοι. Συνεπώς, Άρα η διαφόριση της δίνει όπου (el)
  • Transportsätze oder Transport-Theoreme beschreiben die Regeln für die Zeitableitung von Integralen mit zeitabhängigen Integrationsgrenzen. Solche Zeitableitungen kommen in der Kontinuums- und Strömungsmechanik vor, wo die Integrale beispielsweise eine Zirkulation, einen Volumenstrom durch eine Fläche oder den Impuls einer sich bewegenden und deformierenden Masse darstellen. Das Integrationsgebiet kann entsprechend eine Linie, eine Fläche oder ein Volumen sein. Der Transportsatz für Volumen wird Reynolds’scher Transportsatz oder Reynolds-Transport-Theorem (nach Osborne Reynolds) genannt. Die Transportsätze werden verwendet, um grundlegende Erhaltungssätze der Kontinuumsmechanik herzuleiten. Mathematisch gesehen handelt es sich um Verallgemeinerungen der Leibnizregel für Parameterintegrale. (de)
  • In differential calculus, the Reynolds transport theorem (also known as the Leibniz–Reynolds transport theorem), or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics. Consider integrating f = f(x,t) over the time-dependent region Ω(t) that has boundary ∂Ω(t), then taking the derivative with respect to time: (en)
  • Twierdzenie transportu Reynoldsa – jedno z kluczowych twierdzeń w dynamice płynów. Umożliwia sformułowanie podstawowych praw wykorzystywanych w dynamice płynów – równania zachowania masy, drugiej zasady dynamiki Newtona oraz praw termodynamiki. Sens twierdzenia transportu Reynoldsa można wyjaśnić, zakładając układ, w skład którego wchodzi objętość kontrolna CV (patrz rysunek obok) oraz powierzchnia kontrolną CS, przez którą przepływa płyn. Twierdzenie Reynoldsa stwierdza, że: Twierdzenie to można zapisać matematycznie w postaci równania: lub gdzie: (pl)
  • O teorema de transporte de Reynolds é o teorema fundamental utilizado na formulação das leis básicas da dinâmica dos fluidos, que são a equação da conservação de massa (ou equação da continuidade), as equações de conservação de quantidade de movimento e a equação de conservação de energia. Na física e na engenharia, essas leis são conhecidas, respectivamente, como: lei da conservação da massa, segunda lei de Newton e leis da Termodinâmica. (pt)
  • Reynolds transportteorem (RTT) är en av de mest fundamentala teoremen inom strömningsmekanik för att analysera ett system över en kontrollvolym istället för att analysera individuella massor. RTT tecknas för en fix kontrollvolym med en-dimensionellt flöde: , där kv står för kontrollvolym, ky för kontrollyta, ρ för densiteten, A för area, V för hastighet. B är en extensiv storhet som kan gälla för flera storheter såsom massa och energi. β är en intensiv storhet som bestäms ur: (sv)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
proof
  • Let be reference configuration of the region . Let the motion and the deformation gradient be given by : : Let . Define : Then the integrals in the current and the reference configurations are related by : That this derivation is for a material element is implicit in the time constancy of the reference configuration: it is constant in material coordinates. The time derivative of an integral over a volume is defined as : Converting into integrals over the reference configuration, we get : Since is independent of time, we have : The time derivative of is given by: : Therefore, : where is the material time derivative of . The material derivative is given by : Therefore, : or, : Using the identity : we then have : Using the divergence theorem and the identity , we have : (en)
title
  • Proof for a material element (en)
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software