About: Ricker model     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4uDADpHxYV

The Ricker model, named after Bill Ricker, is a classic discrete population model which gives the expected number N t+1 (or density) of individuals in generation t + 1 as a function of the number of individuals in the previous generation, Here r is interpreted as an intrinsic growth rate and k as the carrying capacity of the environment. The Ricker model was introduced in 1954 by Ricker in the context of stock and recruitment in fisheries. When c = 1, the Hassell model is simply the Beverton–Holt model.

AttributesValues
rdfs:label
  • Modèle de Ricker (fr)
  • Ricker model (en)
  • Модель Рикера (ru)
rdfs:comment
  • En dynamique des populations, le modèle de Ricker est un modèle en temps discret de croissance d'une population. Il est nommé d'après et a été formulé en 1954 dans le cadre de l'étude de la dynamique des stocks de poissons et la gestion des pêcheries. (fr)
  • В теории хаоса (конкретно, в ), модель Рикера — модель роста популяции. Она названа в честь Билла Рикера и была предложена в 1954 году. (ru)
  • The Ricker model, named after Bill Ricker, is a classic discrete population model which gives the expected number N t+1 (or density) of individuals in generation t + 1 as a function of the number of individuals in the previous generation, Here r is interpreted as an intrinsic growth rate and k as the carrying capacity of the environment. The Ricker model was introduced in 1954 by Ricker in the context of stock and recruitment in fisheries. When c = 1, the Hassell model is simply the Beverton–Holt model. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The Ricker model, named after Bill Ricker, is a classic discrete population model which gives the expected number N t+1 (or density) of individuals in generation t + 1 as a function of the number of individuals in the previous generation, Here r is interpreted as an intrinsic growth rate and k as the carrying capacity of the environment. The Ricker model was introduced in 1954 by Ricker in the context of stock and recruitment in fisheries. The model can be used to predict the number of fish that will be present in a fishery. Subsequent work has derived the model under other assumptions such as scramble competition, within-year resource limited competition or even as the outcome of source-sink Malthusian patches linked by density-dependent dispersal. The Ricker model is a limiting case of the Hassell model which takes the form When c = 1, the Hassell model is simply the Beverton–Holt model. (en)
  • En dynamique des populations, le modèle de Ricker est un modèle en temps discret de croissance d'une population. Il est nommé d'après et a été formulé en 1954 dans le cadre de l'étude de la dynamique des stocks de poissons et la gestion des pêcheries. (fr)
  • В теории хаоса (конкретно, в ), модель Рикера — модель роста популяции. Она названа в честь Билла Рикера и была предложена в 1954 году. (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 71 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software