About: SIDD     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSIDD&invfp=IFP_OFF&sas=SAME_AS_OFF

In bioinformatics, SIDD is short for Stress-Induced (DNA) Duplex Destabilization. It is the melting of the DNA which is not induced by a promoter, but purely by the superhelical (also called topological) nature of the DNA. It is based on a statistical mechanics treatment of DNA made by Craig J. Benham and Richard M. Fye. This stress-induced unwinding was shown to coincide with DNA promoter regions of bacterial plasmids and may direct the global response of cells to changes in their external environments by affecting which genes are transcribed.

AttributesValues
rdfs:label
  • SIDD (en)
rdfs:comment
  • In bioinformatics, SIDD is short for Stress-Induced (DNA) Duplex Destabilization. It is the melting of the DNA which is not induced by a promoter, but purely by the superhelical (also called topological) nature of the DNA. It is based on a statistical mechanics treatment of DNA made by Craig J. Benham and Richard M. Fye. This stress-induced unwinding was shown to coincide with DNA promoter regions of bacterial plasmids and may direct the global response of cells to changes in their external environments by affecting which genes are transcribed. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In bioinformatics, SIDD is short for Stress-Induced (DNA) Duplex Destabilization. It is the melting of the DNA which is not induced by a promoter, but purely by the superhelical (also called topological) nature of the DNA. It is based on a statistical mechanics treatment of DNA made by Craig J. Benham and Richard M. Fye. This stress-induced unwinding was shown to coincide with DNA promoter regions of bacterial plasmids and may direct the global response of cells to changes in their external environments by affecting which genes are transcribed. The computational model itself calculates the probability profile of a given base-pair sequence of DNA to denature, as well as the energy profile of sequence. It is through this energy profile that the technique derives its name: base pairs at lower energies are less stable (destabilized) than those of higher energies and more likely to denature. Stress related to the linking number (specifically its twist component) of the DNA causes the destabilization of the double helix (duplex); hence, Stress-Induced Duplex Destabilization. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software