About: Scheme-theoretic intersection     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FScheme-theoretic_intersection&invfp=IFP_OFF&sas=SAME_AS_OFF

In algebraic geometry, the scheme-theoretic intersection of closed subschemes X, Y of a scheme W is , the fiber product of the closed immersions . It is denoted by . Locally, W is given as for some ring R and X, Y as for some ideals I, J. Thus, locally, the intersection is given as Here, we used (for this identity, see tensor product of modules#Examples.) Example: Let be a projective variety with the homogeneous coordinate ring S/I, where S is a polynomial ring. If is a hypersurface defined by some homogeneous polynomial f in S, then

AttributesValues
rdfs:label
  • Scheme-theoretic intersection (en)
rdfs:comment
  • In algebraic geometry, the scheme-theoretic intersection of closed subschemes X, Y of a scheme W is , the fiber product of the closed immersions . It is denoted by . Locally, W is given as for some ring R and X, Y as for some ideals I, J. Thus, locally, the intersection is given as Here, we used (for this identity, see tensor product of modules#Examples.) Example: Let be a projective variety with the homogeneous coordinate ring S/I, where S is a polynomial ring. If is a hypersurface defined by some homogeneous polynomial f in S, then (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In algebraic geometry, the scheme-theoretic intersection of closed subschemes X, Y of a scheme W is , the fiber product of the closed immersions . It is denoted by . Locally, W is given as for some ring R and X, Y as for some ideals I, J. Thus, locally, the intersection is given as Here, we used (for this identity, see tensor product of modules#Examples.) Example: Let be a projective variety with the homogeneous coordinate ring S/I, where S is a polynomial ring. If is a hypersurface defined by some homogeneous polynomial f in S, then If f is linear (deg = 1), it is called a hyperplane section. See also: Bertini's theorem. Now, a scheme-theoretic intersection may not be a correct intersection, say, from the point of view of intersection theory. For example, let = the affine 4-space and X, Y closed subschemes defined by the ideals and . Since X is the union of two planes, each intersecting with Y at the origin with multiplicity one, by the linearity of intersection multiplicity, we expect X and Y intersect at the origin with multiplicity two. On the other hand, one sees the scheme-theoretic intersection consists of the origin with multiplicity three. That is, a scheme-theoretic multiplicity of an intersection may differ from an intersection-theoretic multiplicity, the latter given by Serre's Tor formula. Solving this disparity is one of the starting points for derived algebraic geometry, which aims to introduce the notion of . (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software