About: Schottky junction solar cell     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSchottky_junction_solar_cell&invfp=IFP_OFF&sas=SAME_AS_OFF

In a basic Schottky-junction (Schottky-barrier) solar cell, an interface between a metal and a semiconductor provides the band bending necessary for charge separation. Traditional solar cells are composed of p-type and n-type semiconductor layers sandwiched together, forming the source of built-in voltage (a p-n junction). Due to differing energy levels between the Fermi level of the metal and the conduction band of the semiconductor, an abrupt potential difference is created, instead of the smooth band transition observed across a p-n junction in a standard solar cell, and this is a Schottky height barrier. Although vulnerable to higher rates of thermionic emission, manufacturing of Schottky barrier solar cells proves to be cost-effective and industrially scalable.

AttributesValues
rdfs:label
  • ショットキー接合太陽電池 (ja)
  • Schottky junction solar cell (en)
rdfs:comment
  • ショットキー接合太陽電池またはショットキー型太陽電池は、ショットキー接合を使用して光から電気に変換する効率を高める太陽電池。 (ja)
  • In a basic Schottky-junction (Schottky-barrier) solar cell, an interface between a metal and a semiconductor provides the band bending necessary for charge separation. Traditional solar cells are composed of p-type and n-type semiconductor layers sandwiched together, forming the source of built-in voltage (a p-n junction). Due to differing energy levels between the Fermi level of the metal and the conduction band of the semiconductor, an abrupt potential difference is created, instead of the smooth band transition observed across a p-n junction in a standard solar cell, and this is a Schottky height barrier. Although vulnerable to higher rates of thermionic emission, manufacturing of Schottky barrier solar cells proves to be cost-effective and industrially scalable. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Power_conversion_efficiency.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Schottky_junction.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Standard_Solar_Cell.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In a basic Schottky-junction (Schottky-barrier) solar cell, an interface between a metal and a semiconductor provides the band bending necessary for charge separation. Traditional solar cells are composed of p-type and n-type semiconductor layers sandwiched together, forming the source of built-in voltage (a p-n junction). Due to differing energy levels between the Fermi level of the metal and the conduction band of the semiconductor, an abrupt potential difference is created, instead of the smooth band transition observed across a p-n junction in a standard solar cell, and this is a Schottky height barrier. Although vulnerable to higher rates of thermionic emission, manufacturing of Schottky barrier solar cells proves to be cost-effective and industrially scalable. However, research has shown thin insulating layers between metal and semiconductors improve solar cell performance, generating interest in metal-insulator-semiconductor Schottky junction solar cells. A thin insulating layer, such as silicon dioxide, can reduce rates of electron-hole pair recombination and dark current by allowing the possibility of minority carriers to tunnel through this layer. The Schottky-junction is an attempt to increase the efficiency of solar cells by introducing an impurity energy level in the band gap. This impurity can absorb more lower energy photons, which improves the power conversion efficiency of the cell. This type of solar cell allows enhanced light trapping and faster carrier transport compared to more conventional photovoltaic cells. (en)
  • ショットキー接合太陽電池またはショットキー型太陽電池は、ショットキー接合を使用して光から電気に変換する効率を高める太陽電池。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software