About: Self-linking number     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatKnotInvariants, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSelf-linking_number&invfp=IFP_OFF&sas=SAME_AS_OFF

In knot theory, the self-linking number is an invariant of framed knots. It is related to the linking number of curves. A framing of a knot is a choice of a non-zero non-tangent vector at each point of the knot. More precisely, a framing is a choice of a non-zero section in the normal bundle of the knot, i.e. a (non-zero) normal vector field. Given a framed knot C, the self-linking number is defined to be the linking number of C with a new curve obtained by pushing points of C along the framing vectors.

AttributesValues
rdf:type
rdfs:label
  • Self-linking number (en)
rdfs:comment
  • In knot theory, the self-linking number is an invariant of framed knots. It is related to the linking number of curves. A framing of a knot is a choice of a non-zero non-tangent vector at each point of the knot. More precisely, a framing is a choice of a non-zero section in the normal bundle of the knot, i.e. a (non-zero) normal vector field. Given a framed knot C, the self-linking number is defined to be the linking number of C with a new curve obtained by pushing points of C along the framing vectors. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In knot theory, the self-linking number is an invariant of framed knots. It is related to the linking number of curves. A framing of a knot is a choice of a non-zero non-tangent vector at each point of the knot. More precisely, a framing is a choice of a non-zero section in the normal bundle of the knot, i.e. a (non-zero) normal vector field. Given a framed knot C, the self-linking number is defined to be the linking number of C with a new curve obtained by pushing points of C along the framing vectors. Given a Seifert surface for a knot, the associated Seifert framing is obtained by taking a tangent vector to the surface pointing inwards and perpendicular to the knot. The self-linking number obtained from a Seifert framing is always zero. The blackboard framing of a knot is the framing where each of the vectors points in the vertical (z) direction. The self-linking number obtained from the blackboard framing is called the Kauffman self-linking number of the knot. This is not a knot invariant because it is only well-defined up to regular isotopy. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software