About: Simultaneous eating algorithm     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/9W8avCb3k9

A simultaneous eating algorithm (SE) is an algorithm for allocating divisible objects among agents with ordinal preferences. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies SD-efficiency - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for at least one vector of additive utility functions consistent with the agents' item rankings).

AttributesValues
rdfs:label
  • Simultaneous eating algorithm (en)
rdfs:comment
  • A simultaneous eating algorithm (SE) is an algorithm for allocating divisible objects among agents with ordinal preferences. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies SD-efficiency - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for at least one vector of additive utility functions consistent with the agents' item rankings). (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • A simultaneous eating algorithm (SE) is an algorithm for allocating divisible objects among agents with ordinal preferences. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies SD-efficiency - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for at least one vector of additive utility functions consistent with the agents' item rankings). SE is parametrized by the "eating speed" of each agent. If all agents are given the same eating speed, then the SE allocation satisfies SD-envy-freeness - a strong ordinal variant of envy-freeness (it means that the allocation is envy-free for all vectors of additive utility functions consistent with the agents' item rankings). This particular variant of SE is called the Probabilistic Serial rule (PS). SE was developed by Hervé Moulin and Anna Bogomolnaia as a solution for the fair random assignment problem, where the fraction that each agent receives of each item is interpreted as a probability. If the integral of the eating speed of all agents is 1, then the sum of fractions assigned to each agent is 1, so the matrix of fractions can be decomposed into a lottery over assignments in which each agent gets exactly one item. With equal eating speeds, the lottery is envy-free in expectation (ex-ante) for all vectors of utility functions consistent with the agents' item rankings. A variant of SE was applied also to cake-cutting, where the allocation is deterministic (not random). (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 69 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software