About: Skew-Hamiltonian matrix     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Matrix108267640, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/AyqCjpA2V

In linear algebra, skew-Hamiltonian matrices are special matrices which correspond to skew-symmetric bilinear forms on a symplectic vector space. Let V be a vector space, equipped with a symplectic form . Such a space must be even-dimensional. A linear map is called a skew-Hamiltonian operator with respect to if the form is skew-symmetric. Choose a basis in V, such that is written as . Then a linear operator is skew-Hamiltonian with respect to if and only if its matrix A satisfies , where J is the skew-symmetric matrix

AttributesValues
rdf:type
rdfs:label
  • Matrice anti-hamiltoniana (it)
  • Skew-Hamiltonian matrix (en)
  • 斜漢彌爾頓矩陣 (zh)
rdfs:comment
  • In algebra lineare, le matrici anti-hamiltoniane sono speciali matrici che corrispondono a forme bilineari antisimmetriche su uno spazio vettoriale simplettico. (it)
  • 在線性代數當中,斜漢彌爾頓矩陣是一類與在辛向量空间上的双线性映射相對應的矩陣。 設V為一個向量空間,在其上有著辛形式。則如此的空間其維度必然是偶數維的。在此空間中,當「是斜對稱的」這條件滿足時,一個線性映射被稱作對的斜漢彌爾頓算子(skew-Hamiltonian operator)。 在V中選擇適當的基使得可寫成這樣的形式,那麼一個線性算子被稱為是一個對的斜漢彌爾頓算子,當且僅當當且僅當在這個基中與此算子對應的矩陣A滿足這條件,而J則是一個有如下形式的反對稱矩陣: 其中In是階矩陣的單位矩陣。滿足這條件的矩陣就被稱為斜漢彌爾頓矩陣(skew-Hamiltonian matrix)。 一個漢彌爾頓矩陣的平方是一個斜漢彌爾頓矩陣。這反過來也成立,也就是說,任何的斜漢彌爾頓矩陣都是一個漢彌爾頓矩陣平方。 (zh)
  • In linear algebra, skew-Hamiltonian matrices are special matrices which correspond to skew-symmetric bilinear forms on a symplectic vector space. Let V be a vector space, equipped with a symplectic form . Such a space must be even-dimensional. A linear map is called a skew-Hamiltonian operator with respect to if the form is skew-symmetric. Choose a basis in V, such that is written as . Then a linear operator is skew-Hamiltonian with respect to if and only if its matrix A satisfies , where J is the skew-symmetric matrix (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In linear algebra, skew-Hamiltonian matrices are special matrices which correspond to skew-symmetric bilinear forms on a symplectic vector space. Let V be a vector space, equipped with a symplectic form . Such a space must be even-dimensional. A linear map is called a skew-Hamiltonian operator with respect to if the form is skew-symmetric. Choose a basis in V, such that is written as . Then a linear operator is skew-Hamiltonian with respect to if and only if its matrix A satisfies , where J is the skew-symmetric matrix and In is the identity matrix. Such matrices are called skew-Hamiltonian. The square of a Hamiltonian matrix is skew-Hamiltonian. The converse is also true: every skew-Hamiltonian matrix can be obtained as the square of a Hamiltonian matrix. (en)
  • In algebra lineare, le matrici anti-hamiltoniane sono speciali matrici che corrispondono a forme bilineari antisimmetriche su uno spazio vettoriale simplettico. (it)
  • 在線性代數當中,斜漢彌爾頓矩陣是一類與在辛向量空间上的双线性映射相對應的矩陣。 設V為一個向量空間,在其上有著辛形式。則如此的空間其維度必然是偶數維的。在此空間中,當「是斜對稱的」這條件滿足時,一個線性映射被稱作對的斜漢彌爾頓算子(skew-Hamiltonian operator)。 在V中選擇適當的基使得可寫成這樣的形式,那麼一個線性算子被稱為是一個對的斜漢彌爾頓算子,當且僅當當且僅當在這個基中與此算子對應的矩陣A滿足這條件,而J則是一個有如下形式的反對稱矩陣: 其中In是階矩陣的單位矩陣。滿足這條件的矩陣就被稱為斜漢彌爾頓矩陣(skew-Hamiltonian matrix)。 一個漢彌爾頓矩陣的平方是一個斜漢彌爾頓矩陣。這反過來也成立,也就是說,任何的斜漢彌爾頓矩陣都是一個漢彌爾頓矩陣平方。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 64 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software