About: Spectral theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/7a9DoHTt3v

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a

AttributesValues
rdf:type
rdfs:label
  • Teorema espectral (ca)
  • Spektralsatz (de)
  • Teorema de descomposición espectral (es)
  • Teorema spettrale (it)
  • Théorème spectral (fr)
  • スペクトル定理 (ja)
  • 스펙트럼 정리 (ko)
  • Spectraalstelling (nl)
  • Twierdzenie spektralne (pl)
  • Teorema espectral (pt)
  • Spectral theorem (en)
  • Спектральная теорема (ru)
  • Spektralsatsen (sv)
  • Спектральна теорема (uk)
  • 谱定理 (zh)
rdfs:comment
  • Unter dem Begriff Spektralsatz versteht man verschiedene miteinander verwandte mathematische Aussagen aus der Linearen Algebra und der Funktionalanalysis. Die einfachste Variante macht eine Aussage über die Diagonalisierbarkeit einer bestimmten Klasse von Matrizen. Die weiteren hier betrachteten Spektralsätze übertragen dieses Prinzip auf Operatoren zwischen unendlichdimensionalen Räumen. Der Name leitet sich vom „Spektrum“ der Eigenwerte her. (de)
  • 선형대수학과 함수해석학에서 스펙트럼 정리(spectrum定理, 영어: spectral theorem)는 선형작용소들을 그 고윳값 및 고윳값의 일반화인 스펙트럼으로 나타내는 일련의 정리들이다. (ko)
  • Os teoremas espectrais são fundamentais na álgebra linear, por garantirem a existência de uma base ortonormal de autovectores para alguns tipos de operadores. Isto implica que o operador seja diagonalizável, o que facilita bastante os cálculos. (pt)
  • Spektralsatsen är en samling satser inom linjär algebra. Satserna anger vilka linjära avbildningar som har en bas av ortonormerade egenvektorer och alltså kan diagonaliseras i denna bas, det vill säga huruvida matrisen A kan uttryckas som där D är en diagonalmatris och U är en unitär matris. Satsen anger dels att vissa matriser är diagonaliserbara, dels att det inte är nödvändigt att beräkna en invers, vilket är fallet vid allmänna diagonaliseringar, då matrisen skrivs . (sv)
  • Twierdzenie spektralne – wspólna nazwa twierdzeń w algebrze liniowej i analizie funkcjonalnej uogólniających twierdzenie teorii macierzy mówiące, że Każda macierz normalna może zostać zdiagonalizowana (przy pomocy odpowiedniej macierzy przejścia). Ściślej, jeżeli traktujemy macierz normalną jako macierz pewnego endomorfizmu przestrzeni euklidesowej, to można znaleźć bazę ortonormalną tej przestrzeni, w której macierz ta będzie diagonalna. Twierdzenia spektralne uogólniają ten fakt na przestrzenie nieskończenie wymiarowe z punktu widzenia algebry i analizy funkcjonalnej. (pl)
  • 数学上,特别是线性代数和泛函分析中,谱定理(英語:Spectral theorem)是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特徵分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。 (zh)
  • Спектральна теорема — в лінійній алгебрі та функціональному аналізі, певні результати для лінійних операторів щодо їх діагоналізації. В загальному випадку, спектральна теорема про комутативні C*-алгебри. (uk)
  • En matemàtiques, en particular en àlgebra lineal i anàlisi funcional, el teorema espectral fa referència a diferents resultats sobre operadors lineals o matriu. En termes generals, el teorema espectral proporciona les condicions sota les quals es pot diagonalitzar un operador o una matriu (és a dir, representar com una matriu diagonal en alguna base). Aquest concepte de diagonalització és bastant clar quan es tracten operadors en espais de dimensió finita, però requereix algunes modificacions per als operadors en espais de dimensió infinita. En general, el teorema espectral identifica una classe d'operadors lineals que poden ser modelats pels operadors de multiplicació. En un llenguatge més abstracte, el teorema espectral és un postulat sobre C*-àlgebres commutatives. (ca)
  • En matemáticas, y más especialmente en álgebra lineal y análisis funcional, el teorema de descomposición espectral, o más brevemente teorema espectral, expresa las condiciones bajo las cuales un operador o una matriz pueden ser diagonalizados (es decir, representadas como una matriz diagonal en alguna base). Se identifica así, un tipo de operadores lineales que pueden representarse como una multiplicación de operadores. Ejemplos de los operadores a los que se aplica este teorema son los operadores autoadjuntos, o más en general, los operadores normales en espacios de Hilbert. (es)
  • En mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. La généralisation à la dimension infinie est l'objet de la théorie spectrale. Elle est indispensable à la physique du XXe siècle, par exemple en mécanique quantique. (fr)
  • In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a (en)
  • In algebra lineare e analisi funzionale il teorema spettrale si riferisce a una serie di risultati relativi agli operatori lineari oppure alle matrici. In termini generali il teorema spettrale fornisce condizioni sotto le quali un operatore o una matrice possono essere diagonalizzati, cioè rappresentati da una matrice diagonale in una base. Il teorema spettrale fornisce anche una decomposizione canonica dello spazio vettoriale, chiamata decomposizione spettrale o decomposizione agli autovalori. (it)
  • 数学の、特に線型代数学や函数解析学の分野において、スペクトル定理(スペクトルていり、英: spectral theorem)とは、線型作用素あるいは行列に関する多くの結果である。大雑把に言うと、スペクトル定理は、作用素あるいは行列が対角化可能(すなわち、ある基底において対角行列として表現可能)となる条件を与えるものである。この対角化の概念は、有限次元空間上の作用素については比較的直ちに従うものであるが、無限次元空間上の作用素についてはいくつかの修正が必要となる。一般にスペクトル定理は、乗算作用素によって出来る限り簡単にモデル化される線型作用素のクラスを明らかにするものである。より抽象的に、スペクトル定理は可換なC*-環に関して述べたものである。その歴史的観点については、スペクトル理論を参照されたい。 スペクトル定理が適用できる作用素の例として、自己共役作用素や、より一般のヒルベルト空間上の正規作用素などがある。 スペクトル定理はまた、スペクトル分解(spectral decomposition)や固有値分解(eigendecomposition)と呼ばれるような、作用素の定義されるベクトル空間のを与えるものである。 (ja)
  • In de wiskunde, met name de lineaire algebra en de functionaalanalyse, is een spectraalstelling een uitspraak over voorwaarden waaronder lineaire operatoren of matrices gediagonaliseerd kunnen worden, dat wil zeggen in enige basis weergegeven kunnen worden in diagonaalvorm. Dit concept van diagonaliseerbaarheid is relatief eenvoudig voor operatoren op eindig-dimensionale ruimten, maar vereist enige aanpassing voor operatoren op oneindig-dimensionale ruimten. In het algemeen identificeert de spectraalstelling een klasse van lineaire operatoren, die kunnen worden gemodelleerd door , de eenvoudigste klasse van operatoren om te vinden. In meer abstracte taal is de spectraalstelling een bewering over commutatieve C*-algebra's. (nl)
  • Спектральная теорема — класс теорем о матрицах линейных операторов, дающих условия, при которых такие матрицы могут быть диагонализированы, то есть представлены в виде диагональной матрицы в некотором базисе. Эти теоремы позволяют свести вычисления, включающие диагонализируемые матрицы к гораздо более простым вычислениям, использующим соответствующие диагональные матрицы. Примерами операторов, к которым может быть применена спектральная теорема являются самосопряжённые операторы или, более общо, — нормальные операторы в гильбертовых пространствах. (ru)
rdfs:seeAlso
name
  • Theorem. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 71 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software