About: Spin density wave     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSpin_density_wave&invfp=IFP_OFF&sas=SAME_AS_OFF

Spin-density wave (SDW) and charge-density wave (CDW) are names for two similar low-energy ordered states of solids. Both these states occur at low temperature in anisotropic, low-dimensional materials or in metals that have high densities of states at the Fermi level . Other low-temperature ground states that occur in such materials are superconductivity, ferromagnetism and antiferromagnetism. The transition to the ordered states is driven by the condensation energy which is approximately where is the magnitude of the energy gap opened by the transition.

AttributesValues
rdfs:label
  • Spindichtewelle (de)
  • スピン密度波 (ja)
  • Spin density wave (en)
rdfs:comment
  • Der Begriff Spindichtewelle (SDW) beschreibt den Zustand der Leitungselektronen mancher Metalle oder Supraleiter, bei denen die Dichte der Elektronenspins wellenförmig moduliert ist. Im Gegensatz zu Spinwellen (Magnonen) handelt es sich bei Spindichtewellen nicht um Anregungen, sondern um eine Eigenschaft des Grundzustandes des Systems. (de)
  • Spin-density wave (SDW) and charge-density wave (CDW) are names for two similar low-energy ordered states of solids. Both these states occur at low temperature in anisotropic, low-dimensional materials or in metals that have high densities of states at the Fermi level . Other low-temperature ground states that occur in such materials are superconductivity, ferromagnetism and antiferromagnetism. The transition to the ordered states is driven by the condensation energy which is approximately where is the magnitude of the energy gap opened by the transition. (en)
  • スピン密度波(-みつどは、SDW)と電荷密度波(でんかみつどは、CDW)は、固体におけるエネルギーの低い2つの似通った秩序状態を指す。2つの状態とも、異方的な低次元物質もしくはフェルミエネルギーに高い状態密度を持つ金属において低温でおきる。このような物質でおきる他の低温での基底状態は、超伝導、強磁性、反強磁性である。秩序状態への転移は、凝縮エネルギーによって引き起こされ、その大きさはおよそである。は転移によって開くエネルギーギャップの大きさである。SDWはスピン波とは異なることに注意しなければならない。スピン波は強磁性、反強磁性の励起である。 基本的にSDWとCDWは、周期的な変調をそれぞれ電子のスピンの密度と電荷の密度に生じ、それらは特徴的な空間周波数を持ち、はイオンの位置を表す対称群においては変化しない。CDWによる新たな周期性は、走査型トンネル顕微鏡や電子線回折によって簡単に見ることが出来る。これに比べSDWは見にくく、一般的に中性子回折法や磁化率測定によって見ることができる。もし新たな周期性が格子定数の整数分の1か整数倍の時は、波はコメンシュレートであると言い、そうでない時は、インコメンシュレートであると言う。 (ja)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Crnest.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Der Begriff Spindichtewelle (SDW) beschreibt den Zustand der Leitungselektronen mancher Metalle oder Supraleiter, bei denen die Dichte der Elektronenspins wellenförmig moduliert ist. Im Gegensatz zu Spinwellen (Magnonen) handelt es sich bei Spindichtewellen nicht um Anregungen, sondern um eine Eigenschaft des Grundzustandes des Systems. (de)
  • Spin-density wave (SDW) and charge-density wave (CDW) are names for two similar low-energy ordered states of solids. Both these states occur at low temperature in anisotropic, low-dimensional materials or in metals that have high densities of states at the Fermi level . Other low-temperature ground states that occur in such materials are superconductivity, ferromagnetism and antiferromagnetism. The transition to the ordered states is driven by the condensation energy which is approximately where is the magnitude of the energy gap opened by the transition. Fundamentally SDWs and CDWs involve the development of a superstructure in the form of a periodic modulation in the density of the electronic spins and charges with a characteristic spatial frequency that does not transform according to the symmetry group that describes the ionic positions.The new periodicity associated with CDWs can easily be observed using scanning tunneling microscopy or electron diffraction while the more elusive SDWs are typically observed via neutron diffraction or susceptibility measurements. If the new periodicity is a rational fraction or multiple of the lattice constant, the density wave is said to be commensurate; otherwise the density wave is termed incommensurate. Some solids with a high form density waves while others choose a superconducting or magnetic ground state at low temperatures, because of the existence of in the materials' Fermi surfaces. The concept of a nesting vector is illustrated in the Figure for the famous case of chromium, which transitions from a paramagnetic to SDW state at a Néel temperature of 311 K. Cr is a body-centered cubic metal whose Fermi surface features many parallel boundaries between electron pockets centered at and hole pockets at H. These large parallel regions can be spanned by the nesting wavevector shown in red. The real-space periodicity of the resulting spin-density wave is given by . The formation of an SDW with a corresponding spatial frequency causes the opening of an energy gap that lowers the system's energy. The existence of the SDW in Cr was first posited in 1960 by Albert Overhauser of Purdue. The theory of CDWs was first put forth by Rudolf Peierls of Oxford University, who was trying to explain superconductivity. Many low-dimensional solids have anisotropic Fermi surfaces that have prominent nesting vectors. Well-known examples include layered materials like NbSe3, TaSe2 and K0.3MoO3 (a Chevrel phase) and quasi-1D organic conductors like TMTSF or TTF-TCNQ. CDWs are also common at the surface of solids where they are more commonly called surface reconstructions or even dimerization. Surfaces so often support CDWs because they can be described by two-dimensional Fermi surfaces like those of layered materials. Chains of Au and In on semiconducting substrates have been shown to exhibit CDWs. More recently, monatomic chains of Co on a metallic substrate were experimentally shown to exhibit a CDW instability and was attributed to ferromagnetic correlations. The most intriguing properties of density waves are their dynamics. Under an appropriate electric field or magnetic field, a density wave will "slide" in the direction indicated by the field due to the electrostatic or magnetostatic force. Typically the sliding will not begin until a "depinning" threshold field is exceeded where the wave can escape from a potential well caused by a defect. The hysteretic motion of density waves is therefore not unlike that of dislocations or magnetic domains. The current-voltage curve of a CDW solid therefore shows a very high electrical resistance up to the depinning voltage, above which it shows a nearly ohmic behavior. Under the depinning voltage (which depends on the purity of the material), the crystal is an insulator. (en)
  • スピン密度波(-みつどは、SDW)と電荷密度波(でんかみつどは、CDW)は、固体におけるエネルギーの低い2つの似通った秩序状態を指す。2つの状態とも、異方的な低次元物質もしくはフェルミエネルギーに高い状態密度を持つ金属において低温でおきる。このような物質でおきる他の低温での基底状態は、超伝導、強磁性、反強磁性である。秩序状態への転移は、凝縮エネルギーによって引き起こされ、その大きさはおよそである。は転移によって開くエネルギーギャップの大きさである。SDWはスピン波とは異なることに注意しなければならない。スピン波は強磁性、反強磁性の励起である。 基本的にSDWとCDWは、周期的な変調をそれぞれ電子のスピンの密度と電荷の密度に生じ、それらは特徴的な空間周波数を持ち、はイオンの位置を表す対称群においては変化しない。CDWによる新たな周期性は、走査型トンネル顕微鏡や電子線回折によって簡単に見ることが出来る。これに比べSDWは見にくく、一般的に中性子回折法や磁化率測定によって見ることができる。もし新たな周期性が格子定数の整数分の1か整数倍の時は、波はコメンシュレートであると言い、そうでない時は、インコメンシュレートであると言う。 なぜ、高いを持つ固体は低温で密度波を形成し、他の物質は超伝導や磁気的な基底状態をとるのか。その答えは物質のフェルミ面に存在するネスティングベクトルと関係している。ネスティングベクトルの概念を図に示す。これはよく知られたCrの場合である。Crはネール温度311Kで常磁性からSDW状態に転移する。Crは体心立方格子であり、フェルミ面の特徴として、点とH点を中心とする電子ポケットの間に、フェルミ面が多くの平行な境界を持っている。これらの大きい平行な領域は、図の赤で示されたネスティングベクトルによって結ばれている。スピン密度波によって出来た実空間での周期はで与えられる。この空間周波数のSDWができることによって、エネルギーギャップが開き、系のエネルギーが下がる。CrにおけるSDWの存在を始めて仮定したのはパデュー大学のである。MITのクリフォード・シャルは、CrにおけるSDWを実験で観測したことで、1994年にノーベル物理学賞を受賞した。CDWの理論を初めて提案したのは、超伝導を説明しようとしていたオックスフォード大学のルドルフ・パイエルスである。 低次元の固体の多くはフェルミ面が異方的であり、顕著なネスティングベクトルを持っている。有名なものに、層状物質のNbSe3、TaSe3、K0.03MoO3(Chevrel相)やのTMTSFやTTF-TCNQがある。CDWは固体の表面でも良く見られ、表面再構成や二量化などと呼ばれる。表面は二次元フェルミ面で描かれ、層状物質のようになっているので、CDWにとってしばしば都合が良い。 密度波の最も魅力的な性質は、そのダイナミクスである。適切な電場や磁場のもとでは、場の向いている方向に密度波が"スライド"する。電場や磁場の力によるものである。大抵は密度波のスライディングは直ちに起こらず、しきい電場を越えるまでは"ピン止め"されている。しきい値電場で、欠陥が作るポテンシャルから抜け出すことが出来る。したがって、密度波のヒステリシスのある動きは転位や磁区のものとは異なる。電荷密度波固体の電流電圧曲線は、ピン止め電圧までは非常に高い抵抗を示し、それより上ではオームの法則的な振る舞いを示す。ピン止め電圧は物質の純度に依存するが、この電圧以下では結晶は絶縁体である。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software