About: Square root of a matrix     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Matrix108267640, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2nBXo66zLM

In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A. Some authors use the name square root or the notation A1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = BTB = A (for real-valued matrices, where BT is the transpose of B).

AttributesValues
rdf:type
rdfs:label
  • الجذر التربيعي لمصفوفة (ar)
  • Quadratwurzel einer Matrix (de)
  • Raíz cuadrada de una matriz (es)
  • Racine carrée d'une matrice (fr)
  • Radice quadrata di una matrice (it)
  • 제곱근 행렬 (ko)
  • 行列の平方根 (ja)
  • Square root of a matrix (en)
  • Квадратный корень из матрицы (ru)
  • Квадратний корінь матриці (uk)
  • 矩阵的平方根 (zh)
rdfs:comment
  • في الرياضيات، الجذر التربيعي لمصفوفة (بالإنجليزية: Square root of a matrix)‏ هو مفهوم يمكن من تمديد الجذر التربيعي من الأعداد إلى المصفوفات. يقال عن المصفوفة B أنها الجذر التربيعي للمصفوفة A إذا توفر ما يلي: الجداء BB يساوي A. (ar)
  • Die Quadratwurzel einer Matrix oder Matrixwurzel ist ein Begriff aus der linearen Algebra und verallgemeinert das Konzept der Quadratwurzel einer reellen Zahl. Eine Quadratwurzel einer quadratischen Matrix ist eine Matrix, die mit sich selbst multipliziert die Ausgangsmatrix ergibt. Für symmetrische positiv semidefinite Matrizen lässt sich eine eindeutige Quadratwurzel definieren. Im Allgemeinen muss allerdings weder eine Quadratwurzel existieren, noch muss sie, wenn sie existiert, eindeutig sein. (de)
  • En matemáticas, la raíz cuadrada de una matriz extiende la noción de raíz cuadrada de los números a las matrices. Una matriz B se dice que es una raíz cuadrada de A si el producto matricial BB es igual a A.​ (es)
  • En mathématiques, la notion de racine carrée d'une matrice particularise aux anneaux de matrices carrées la notion générale de racine carrée dans un anneau. (fr)
  • 수학에서 행렬의 제곱근(Square root of a matrix) 또는 제곱근 행렬은 제곱근이라는 개념을 수의 체계에서 행렬로 확장한 것이다. 행렬 곱 B B 가 A와 같으면 행렬 B는 A의 제곱근이라고한다. (ko)
  • In matematica, per radice quadrata di una matrice quadrata si intende ogni matrice quadrata tale che il suo quadrato sia . In generale, una matrice non possiede un'unica radice quadrata. (it)
  • Квадратный корень из матрицы — расширение понятия числового квадратного корня на кольцо квадратных матриц. (ru)
  • Квадратний корінь матриці — є розширенням поняття квадратного кореня з чисел на матриці. Матриця є коренем матриці якщо добуток матриць рівний . (uk)
  • 在数学中,矩阵的平方根是算术中的平方根概念的推广。对一个矩阵A,如果矩阵B满足 那么矩阵B就是A的一个平方根。 (zh)
  • In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A. Some authors use the name square root or the notation A1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = BTB = A (for real-valued matrices, where BT is the transpose of B). (en)
  • 数学のおもに線型代数学および函数解析学における行列の平方根(ぎょうれつのへいほうこん、英: square root of a matrix)は、数に対する通常の平方根の概念を行列に対して拡張するものである。すなわち、行列 B が行列 A の平方根であるとは、行列の積に関して B2 = BB が A に等しいときに言う。 「実数の平方根は必ずしも実数にならないが、複素数は必ず複素数の範囲で平方根を持つ」ことに対応する事実として、実行列の平方根は(存在しても)必ずしも実行列にならないが、複素行列が平方根を持てばそれは必ず複素行列の範囲で取れる。 平方根を持たない行列も存在する。 また一般に、ひとつの行列が複数の平方根を持ち得る。実際、2 × 2 単位行列は次のように無数の平方根を持つ。 このように行列の平方根は無数に存在しうるが、半正定値行列の範疇で行列の主平方根 (principal square root) の概念が定義できて「半正定値行列の主平方根はただ一つ」である(これは「非負実数が非負の平方根(主平方根)をただ一つだけ持つ」という事実に対応する)。 (ja)
rdfs:seeAlso
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software