About: Straight-line program     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Ship, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FStraight-line_program&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, more specifically in computational algebra, a straight-line program (SLP) for a finite group G = ⟨S⟩ is a finite sequence L of elements of G such that every element of L either belongs to S, is the inverse of a preceding element, or the product of two preceding elements. An SLP L is said to compute a group element g ∈ G if g ∈ L, where g is encoded by a word in S and its inverses. Explicit straight-line programs are given for a wealth of finite simple groups in the online ATLAS of Finite Groups.

AttributesValues
rdf:type
rdfs:label
  • Straight-line program (en)
rdfs:comment
  • In mathematics, more specifically in computational algebra, a straight-line program (SLP) for a finite group G = ⟨S⟩ is a finite sequence L of elements of G such that every element of L either belongs to S, is the inverse of a preceding element, or the product of two preceding elements. An SLP L is said to compute a group element g ∈ G if g ∈ L, where g is encoded by a word in S and its inverses. Explicit straight-line programs are given for a wealth of finite simple groups in the online ATLAS of Finite Groups. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
b
p
  • −1 (en)
has abstract
  • In mathematics, more specifically in computational algebra, a straight-line program (SLP) for a finite group G = ⟨S⟩ is a finite sequence L of elements of G such that every element of L either belongs to S, is the inverse of a preceding element, or the product of two preceding elements. An SLP L is said to compute a group element g ∈ G if g ∈ L, where g is encoded by a word in S and its inverses. Intuitively, an SLP computing some g ∈ G is an efficient way of storing g as a group word over S; observe that if g is constructed in i steps, the word length of g may be exponential in i, but the length of the corresponding SLP is linear in i. This has important applications in computational group theory, by using SLPs to efficiently encode group elements as words over a given generating set. Straight-line programs were introduced by Babai and Szemerédi in 1984 as a tool for studying the computational complexity of certain matrix group properties. Babai and Szemerédi prove that every element of a finite group G has an SLP of length O(log2|G|) in every generating set. An efficient solution to the constructive membership problem is crucial to many group-theoretic algorithms. It can be stated in terms of SLPs as follows. Given a finite group G = ⟨S⟩ and g ∈ G, find a straight-line program computing g over S. The constructive membership problem is often studied in the setting of black box groups. The elements are encoded by bit strings of a fixed length. Three oracles are provided for the group-theoretic functions of multiplication, inversion, and checking for equality with the identity. A black box algorithm is one which uses only these oracles. Hence, straight-line programs for black box groups are black box algorithms. Explicit straight-line programs are given for a wealth of finite simple groups in the online ATLAS of Finite Groups. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 61 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software