rdfs:comment
| - Euskarri bektoredun makinak (ingelesez, support-vector machine, SVM) sailkapenerako eta erregresiorako erabiltzen den algoritmo sorta da. Jatorriz , sailkapen bitar eta erabiltzen den arren, beste aukera asko eskaintzen dutela frogatu izan da. (eu)
- Pada dasarnya, support-vector machine (SVM) adalah sebuah algoritma klasifikasi untuk data linear dan non-linear. SVM menggunakan mapping non-linear untuk mentransformasikan training data awal ke dimensi yang lebih tinggi. (in)
- サポートベクターマシン(英: support-vector machine, SVM)は、教師あり学習を用いるパターン認識モデルの1つである。分類や回帰へ適用できる。1963年にとAlexey Ya. Chervonenkisが線形サポートベクターマシンを発表し、1992年にBernhard E. Boser、Isabelle M. Guyon、ウラジミール・ヴァプニクが非線形へと拡張した。 サポートベクターマシンは、現在知られている手法の中でも認識性能が優れた学習モデルの1つである。サポートベクターマシンが優れた認識性能を発揮することができる理由は、未学習データに対して高い識別性能を得るための工夫があるためである。 (ja)
- 서포트 벡터 머신(support vector machine, SVM)은 기계 학습의 분야 중 하나로 패턴 인식, 자료 분석을 위한 지도 학습 모델이며, 주로 분류와 회귀 분석을 위해 사용한다. 두 카테고리 중 어느 하나에 속한 데이터의 집합이 주어졌을 때, SVM 알고리즘은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 카테고리에 속할지 판단하는 비확률적 이진 선형 분류 모델을 만든다. 만들어진 분류 모델은 데이터가 사상된 공간에서 경계로 표현되는데 SVM 알고리즘은 그 중 가장 큰 폭을 가진 경계를 찾는 알고리즘이다. SVM은 선형 분류와 더불어 비선형 분류에서도 사용될 수 있다. 비선형 분류를 하기 위해서 주어진 데이터를 고차원 특징 공간으로 사상하는 작업이 필요한데, 이를 효율적으로 하기 위해 을 사용하기도 한다. (ko)
- Support vector machine (SVM) is een algoritme op het gebied van gecontroleerd machinaal leren. De methode is gebaseerd op de theorie van statistisch leren van de Russen Vapnik en Chervonenkis. Ze heeft vele uiteenlopende toepassingen in classificatie en regressie-analyse. (nl)
- Maszyna wektorów nośnych, maszyna wektorów wspierających, maszyna wektorów podpierających – abstrakcyjny koncept maszyny, która działa jak klasyfikator, a której nauka ma na celu wyznaczenie hiperpłaszczyzny rozdzielającej z maksymalnym marginesem przykłady należące do dwóch klas. Często jest stosowana niejawnie w procesie rozpoznawania obrazów. Maszyna wektorów nośnych korzystająca z jądra radialnej funkcji bazowej jest w stanie klasyfikować nierozdzielne liniowo klasy. W przypadku wystąpienia więcej niż jednej klasy maszynę wektorów nośnych zazwyczaj uczy się metodą one-versus-rest. (pl)
- En stödvektormaskin (eng. support-vector machine) är en typ av statistisk klassificerare, närmare bestämt en generaliserad linjär klassificerare. Den linjära formuleringen av algoritmen introducerades av 1963. Metoden kan även användas för regression. Stödvektormaskiner betraktas som robusta och har använts i många praktiska tillämpningar, till exempel för optisk teckenigenkänning samt ett stort antal olika områden inom språkteknologin och även i datorseende. De kan hantera relativt stora träningsmängder och har metoder för att förhindra överanpassning. (sv)
- 在机器学习中,支援向量机(英語:support vector machine,常简称為SVM,又名支援向量网络)是在分类与迴歸分析中分析数据的監督式學習模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法建立一个将新的实例分配给两个类别之一的模型,使其成为非概率线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。 除了进行线性分类之外,SVM还可以使用所谓的有效地进行非线性分类,将其输入隐式映射到高维特征空间中。 当数据未被标记时,不能进行监督式学习,需要用非監督式學習,它会尝试找出数据到簇的自然聚类,并将新数据映射到这些已形成的簇。将支援向量机改进的聚类算法被称为支援向量聚类,当数据未被标记或者仅一些数据被标记时,支援向量聚类经常在工业应用中用作分类步骤的预处理。 (zh)
- تُعدّ خوارزمية آلة المتجهات الداعمة (أو شبكة المتجهات الداعمة) واحدة من خوارزميات تعلّم الآلة المراقب (تكون هنا البيانات مصنفة أو مرمزة)، وتُستخدم هذه الخوارزمية لتحليل البيانات من أجل تصنيفها تصنيفًا إحصائيًا أو تحليل الإنحدارلها. تبدأ الخوارزمية إنطلاقًا من البيانات المصنّفة (المرمزة)، وغالبًا ما يكون الترميز باستخدام صفين فقط، فإما أن تنتمي البيانات إلى الصف الأول (س) أو إلى الصف الثاني (ع). بعد ذلك تبدأ عملية التدريب التي تهدف إلى إيجاد إطار الخطي (مستوي مثلًا) يقوم بفصل البيانات بأفضل طريقة ممكنة، بحيث تكون البيانات (س) على طرف المستوي والبيانات (ع) على الطرف الآخر. (ar)
- Una màquina de vector de suport (SVM o support-vector machines en anglès) és un concepte al món estadístic i de les ciències de la computació sobre un conjunt d'algorismes que són capaços d'analitzar dades i reconèixer patrons mitjançant l'ús de mètodes d'aprenentatge supervisat. Aquests mètodes són utilitzats principalment en problemes de classificació o d'anàlisi de la regressió. Una màquina de vectors agafa com a entrada un set de dades i prediu, per cadascuna d'aquestes entrades a quina de les dues possibles classes pertany. Mitjançant l'entrenament amb dades d'entrada prèviament classificades, s'estableix un model que separa les dues classes entrants. Aquest model N-dimensional estableix una frontera entre les dues tipologies establertes, aquesta se situa en el punt en el qual la dife (ca)
- Support vector machines (SVM) neboli metoda podpůrných vektorů je metoda strojového učení s učitelem, sloužící zejména pro klasifikaci a také pro regresní analýzu. Na jejím vynalezení se podílel zejména . Používají se různé kernelové transformace. Intuitivně, vyjadřují podobnost dat, tj. svých dvou vstupních argumentů. Výhodou této metody (a jiných metod založených na jádrové transformaci) je, že transformace se dá definovat pro různé typy objektů, nejen body v Rn. Např. pro grafy, stromy, posloupnosti DNA atd. (cs)
- Eine Support Vector Machine [səˈpɔːt ˈvektə məˈʃiːn] (SVM, die Übersetzung aus dem Englischen, „Stützvektormaschine“ oder Stützvektormethode, ist nicht gebräuchlich) dient als Klassifikator (vgl. Klassifizierung) und Regressor (vgl. Regressionsanalyse). Eine Support Vector Machine unterteilt eine Menge von Objekten so in Klassen, dass um die Klassengrenzen herum ein möglichst breiter Bereich frei von Objekten bleibt; sie ist ein sogenannter Large Margin Classifier (dt. „Breiter-Rand-Klassifikator“). (de)
- Las máquinas de vectores de soporte o máquinas de vector soporte (del inglés support-vector machines, SVM) son un conjunto de algoritmos de aprendizaje supervisado desarrollados por Vladimir Vapnik y su equipo en los laboratorios de AT&T Bell. Más formalmente, una SVM construye un hiperplano o conjunto de hiperplanos en un espacio de dimensionalidad muy alta (o incluso infinita) que puede ser utilizado en problemas de clasificación o regresión. Una buena separación entre las clases permitirá una clasificación correcta. (es)
- In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues (Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995, Vapnik et al., 1997) SVMs are one of the most robust prediction methods, being based on statistical learning frameworks or VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974). Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier (although methods such as (en)
- Les machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. (fr)
- Le macchine a vettori di supporto (SVM, dall'inglese support-vector machines) sono dei modelli di apprendimento supervisionato associati ad algoritmi di apprendimento per la regressione e la classificazione. Dato un insieme di esempi per l'addestramento, ognuno dei quali etichettato con la classe di appartenenza fra le due possibili classi, un algoritmo di addestramento per le SVM costruisce un modello che assegna i nuovi esempi a una delle due classi, ottenendo quindi un classificatore lineare binario non probabilistico. Un modello SVM è una rappresentazione degli esempi come punti nello spazio, mappati in modo tale che gli esempi appartenenti alle due diverse categorie siano chiaramente separati da uno spazio il più possibile ampio. I nuovi esempi sono quindi mappati nello stesso spazio (it)
- Uma máquina de vetores de suporte (SVM, do inglês: support-vector machine) é um conceito na ciência da computação para um conjunto de métodos de aprendizado supervisionado que analisam os dados e reconhecem padrões, usado para classificação e análise de regressão. O SVM padrão toma como entrada um conjunto de dados e prediz, para cada entrada dada, qual de duas possíveis classes a entrada faz parte, o que faz do SVM um classificador linear binário não probabilístico. Dados um conjunto de exemplos de treinamento, cada um marcado como pertencente a uma de duas categorias, um algoritmo de treinamento do SVM constrói um modelo que atribui novos exemplos a uma categoria ou outra. Um modelo SVM é uma representação de exemplos como pontos no espaço, mapeados de maneira que os exemplos de cada cat (pt)
- В машинному навчанні ме́тод опо́рних векторі́в — це метод аналізу даних для класифікації та регресійного аналізу за допомогою моделей з керованим навчанням з пов'язаними алгоритмами навчання, які називаються опо́рно-ве́кторними маши́нами (ОВМ, англ. support vector machines, SVM, також опо́рно-ве́кторними мере́жами, англ. support vector networks). Для заданого набору тренувальних зразків, кожен із яких відмічено як належний до однієї чи іншої з двох категорій, алгоритм тренування ОВМ будує модель, яка відносить нові зразки до однієї чи іншої категорії, роблячи це неймовірнісним бінарним лінійним класифікатором. Модель ОВМ є представленням зразків як точок у просторі, відображених таким чином, що зразки з окремих категорій розділено чистою прогалиною, яка є щонайширшою. Нові зразки тоді відо (uk)
- Метод опорных векторов (англ. SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как частный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором. (ru)
|