About: Synaptic augmentation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSynaptic_augmentation&invfp=IFP_OFF&sas=SAME_AS_OFF

Augmentation is one of four components of short-term synaptic plasticity that increases the probability of releasing synaptic vesicles during and after repetitive stimulation such that when all the other components of enhancement and depression are zero, where is augmentation at time and 0 refers to the baseline response to a single stimulus. The increase in the number of synaptic vesicles that release their transmitter leads to enhancement of the post synaptic response. Augmentation can be differentiated from the other components of enhancement by its kinetics of decay and by pharmacology. Augmentation selectively decays with a time constant of about 7 seconds and its magnitude is enhanced in the presence of barium. All four components are thought to be associated with or triggered by i

AttributesValues
rdfs:label
  • Synaptic augmentation (en)
rdfs:comment
  • Augmentation is one of four components of short-term synaptic plasticity that increases the probability of releasing synaptic vesicles during and after repetitive stimulation such that when all the other components of enhancement and depression are zero, where is augmentation at time and 0 refers to the baseline response to a single stimulus. The increase in the number of synaptic vesicles that release their transmitter leads to enhancement of the post synaptic response. Augmentation can be differentiated from the other components of enhancement by its kinetics of decay and by pharmacology. Augmentation selectively decays with a time constant of about 7 seconds and its magnitude is enhanced in the presence of barium. All four components are thought to be associated with or triggered by i (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Augmentation is one of four components of short-term synaptic plasticity that increases the probability of releasing synaptic vesicles during and after repetitive stimulation such that when all the other components of enhancement and depression are zero, where is augmentation at time and 0 refers to the baseline response to a single stimulus. The increase in the number of synaptic vesicles that release their transmitter leads to enhancement of the post synaptic response. Augmentation can be differentiated from the other components of enhancement by its kinetics of decay and by pharmacology. Augmentation selectively decays with a time constant of about 7 seconds and its magnitude is enhanced in the presence of barium. All four components are thought to be associated with or triggered by increases in internal calcium ions that build up and decay during repetitive stimulation. During a train of impulses the enhancement of synaptic strength due to the underlying component that gives rise to augmentation can be described by where is the unit impulse function at the time of stimulation, is the incremental increase in with each impulse, and is the rate constant for the loss of . During a stimulus train the magnitude of augmentation added by each impulse, a*, can increase during the train such that where is the increment added by the first impulse of the train, is a constant that determines the increase in with each impulse, is the stimulation rate, and is the duration of stimulation. Augmentation is differentiated from the three other components of enhancement by its time constant of decay. This is shown in Table 1 where the first and second components of facilitation, F1 and F2, decay with time constants of about 50 and 300 ms, and potentiation, P, decays with a time constant than ranges from tens of seconds to minutes depending on the duration of stimulation. Also included in the table are two components of depression D1 and D2, along with their associated decay time constants of recovery decay back to normal. Depression at some synapses may arise from depletion of synaptic vesicles available for release. Depression of synaptic vesicle release may mask augmentation because of overlapping time courses. Also included in the table is the fraction change in transmitter release arising from one impulse. A magnitude of 0.8 would increase transmitter release 80%. †The magnitude of augmentation added by each impulse can increase during the train.‡The time constant of P can increase with repetitive stimulation. The balance between various components of enhancement and depression at the mammalian synapse is affected by temperature so that maintenance of the components of enhancement is greatly reduced at temperatures lower than physiological. During repetitive stimulation at 23 °C components of depression dominate synaptic release, whereas at 33–38 °C synaptic strength increases due to a shift towards components of enhancement. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software