About: Theorem of the three geodesics     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FTheorem_of_the_three_geodesics&invfp=IFP_OFF&sas=SAME_AS_OFF

In differential geometry the theorem of the three geodesics, also known as Lyusternik–Schnirelmann theorem, states that every Riemannian manifold with the topology of a sphere has at least three simple closed geodesics (i.e. three embedded geodesic circles). The result can also be extended to quasigeodesics on a convex polyhedron, and to closed geodesics of reversible Finsler 2-spheres. The theorem is sharp: although every Riemannian 2-sphere contains infinitely many distinct closed geodesics, only three of them are guaranteed to have no self-intersections. For example, by a result of Morse if the lengths of three principal axes of an ellipsoid are distinct, but sufficiently close to each other, then the ellipsoid has only three simple closed geodesics.

AttributesValues
rdfs:label
  • Teorema tiga geodesik (in)
  • Theorem of the three geodesics (en)
  • Теорема про три геодезичні (uk)
rdfs:comment
  • Dalam geometri diferensial, teorema tiga geodetik atau teorema Lyusternik–Schnirelmann menyatakan bahwa setiap manifold Riemann dengan topologi bola setidaknya memiliki tiga yang membentuk tanpa perpotongan-diri. Hasilnya juga dapat diperluas ke kuasigeodesik pada polihedron cembung. (in)
  • In differential geometry the theorem of the three geodesics, also known as Lyusternik–Schnirelmann theorem, states that every Riemannian manifold with the topology of a sphere has at least three simple closed geodesics (i.e. three embedded geodesic circles). The result can also be extended to quasigeodesics on a convex polyhedron, and to closed geodesics of reversible Finsler 2-spheres. The theorem is sharp: although every Riemannian 2-sphere contains infinitely many distinct closed geodesics, only three of them are guaranteed to have no self-intersections. For example, by a result of Morse if the lengths of three principal axes of an ellipsoid are distinct, but sufficiently close to each other, then the ellipsoid has only three simple closed geodesics. (en)
  • У диференціальній геометрії теорема про три геодезичні стверджує, що кожен ріманів многовид з топологією сфери має три замкнені геодезичні, які є простими замкненими кривими без самоперетинів. Теорема також буде вірною для випадку квазігеодезичних ліній на поверхні опуклого многогранника. (uk)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Ellipsoid_tri-axial_abc.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Dalam geometri diferensial, teorema tiga geodetik atau teorema Lyusternik–Schnirelmann menyatakan bahwa setiap manifold Riemann dengan topologi bola setidaknya memiliki tiga yang membentuk tanpa perpotongan-diri. Hasilnya juga dapat diperluas ke kuasigeodesik pada polihedron cembung. (in)
  • In differential geometry the theorem of the three geodesics, also known as Lyusternik–Schnirelmann theorem, states that every Riemannian manifold with the topology of a sphere has at least three simple closed geodesics (i.e. three embedded geodesic circles). The result can also be extended to quasigeodesics on a convex polyhedron, and to closed geodesics of reversible Finsler 2-spheres. The theorem is sharp: although every Riemannian 2-sphere contains infinitely many distinct closed geodesics, only three of them are guaranteed to have no self-intersections. For example, by a result of Morse if the lengths of three principal axes of an ellipsoid are distinct, but sufficiently close to each other, then the ellipsoid has only three simple closed geodesics. (en)
  • У диференціальній геометрії теорема про три геодезичні стверджує, що кожен ріманів многовид з топологією сфери має три замкнені геодезичні, які є простими замкненими кривими без самоперетинів. Теорема також буде вірною для випадку квазігеодезичних ліній на поверхні опуклого многогранника. (uk)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software