About: Transposons as a genetic tool     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Protein, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/AKPuJS7bpF

Transposons are semi-parasitic DNA sequences which can replicate and spread through the host's genome. They can be harnessed as a genetic tool for analysis of gene and protein function. The use of transposons is well-developed in Drosophila (in which P elements are most commonly used) and in Thale cress (Arabidopsis thaliana) and bacteria such as Escherichia coli (E. coli ).

AttributesValues
rdf:type
rdfs:label
  • Transposons as a genetic tool (en)
rdfs:comment
  • Transposons are semi-parasitic DNA sequences which can replicate and spread through the host's genome. They can be harnessed as a genetic tool for analysis of gene and protein function. The use of transposons is well-developed in Drosophila (in which P elements are most commonly used) and in Thale cress (Arabidopsis thaliana) and bacteria such as Escherichia coli (E. coli ). (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/P_elements_1.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/P_elements_2.png
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Transposons are semi-parasitic DNA sequences which can replicate and spread through the host's genome. They can be harnessed as a genetic tool for analysis of gene and protein function. The use of transposons is well-developed in Drosophila (in which P elements are most commonly used) and in Thale cress (Arabidopsis thaliana) and bacteria such as Escherichia coli (E. coli ). Currently transposons can be used in genetic research and recombinant genetic engineering for insertional mutagenesis. Insertional mutagenesis is when transposons function as vectors to help remove and integrate genetic sequences. Given their relatively simple design and inherent ability to move DNA sequences, transposons are highly compatible at transducing genetic material, making them ideal genetic tools. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 69 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software