About: Traumatic brain injury modeling     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4sfgw2E718

Traumatic brain injury modeling replicates aspects of traumatic brain injury (TBI) as a method to better understand what physically happens to the brain. Researchers use a variety of models for this process, with different models able to replicate certain aspects of TBI while also producing their own limitations.

AttributesValues
rdfs:label
  • Traumatic brain injury modeling (en)
rdfs:comment
  • Traumatic brain injury modeling replicates aspects of traumatic brain injury (TBI) as a method to better understand what physically happens to the brain. Researchers use a variety of models for this process, with different models able to replicate certain aspects of TBI while also producing their own limitations. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Traumatic brain injury modeling replicates aspects of traumatic brain injury (TBI) as a method to better understand what physically happens to the brain. Researchers use a variety of models for this process, with different models able to replicate certain aspects of TBI while also producing their own limitations. An estimated 1.7 million cases of TBI occur per year, not taking into account the lasting affects that TBI may cause. TBI is also reported as a contributing factor in about 30% of all injury related death. Given how prevalent TBI is, preventing or minimizing its effects would benefit many people worldwide. Models bring advantages and disadvantages to TBI research. They are good at representing one observable aspect but must ignore other aspects. For example, a researcher may study blunt impacts with a neuronal cell culture model that is the depth of the cortical layer. The researcher subjects this to different impact sizes, shapes, and forces to see how cells react and what cytokines they release. This model works well for the cortical layer, but ignores deeper cell layers due to the inability to oxygenate a deeper cell culture effectively. In this experiment, the disadvantage and limitation of this model is cell depth. It gathers accurate information within the cortical layer, but ignores interactions that might occur below the cortical layer. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 71 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software