About: Univariate     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4vk5hH4XqS

In mathematics, a univariate object is an expression, equation, function or polynomial involving only one variable. Objects involving more than one variable are multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for example, the fundamental theorem of algebra and Euclid's algorithm for polynomials are fundamental properties of univariate polynomials that cannot be generalized to multivariate polynomials.

AttributesValues
rdfs:label
  • أحادية المتغير (رياضيات) (ar)
  • Univariable (ca)
  • Univariat (de)
  • Univariate (en)
rdfs:comment
  • في الرياضيات، يصف التعبير أحادية المتغير (بالإنجليزية: Univariate)‏ تعبيرا أو معادلة أو دالة أو متعددة حدود عدد متغيراتها يساوي الواحد. (ar)
  • En matemàtiques, el terme univariable es refereix a una expressió, equació, funció o polinomi que té només una variable. En cas que tinguin més d'una variable s'anomenen multivariables. En alguns casos la distinció entre els casos univariable i multivariable és fonamental: per exemple, el teorema fonamental de l'àlgebra i l' són propietats bàsiques dels polinomis univariables que no es poden generalitzar a polinomis multivariables. El terme s'utilitza en estadística per distingir una distribució d'una variable respecte d'una distribució de diverses variables. (ca)
  • Der mathematische Begriff univariat bezeichnet die Abhängigkeit von nur einer Variablen. In der Statistik wird der Begriff in verwandter Bedeutung verwendet. (de)
  • In mathematics, a univariate object is an expression, equation, function or polynomial involving only one variable. Objects involving more than one variable are multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for example, the fundamental theorem of algebra and Euclid's algorithm for polynomials are fundamental properties of univariate polynomials that cannot be generalized to multivariate polynomials. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • في الرياضيات، يصف التعبير أحادية المتغير (بالإنجليزية: Univariate)‏ تعبيرا أو معادلة أو دالة أو متعددة حدود عدد متغيراتها يساوي الواحد. (ar)
  • En matemàtiques, el terme univariable es refereix a una expressió, equació, funció o polinomi que té només una variable. En cas que tinguin més d'una variable s'anomenen multivariables. En alguns casos la distinció entre els casos univariable i multivariable és fonamental: per exemple, el teorema fonamental de l'àlgebra i l' són propietats bàsiques dels polinomis univariables que no es poden generalitzar a polinomis multivariables. El terme s'utilitza en estadística per distingir una distribució d'una variable respecte d'una distribució de diverses variables. (ca)
  • Der mathematische Begriff univariat bezeichnet die Abhängigkeit von nur einer Variablen. In der Statistik wird der Begriff in verwandter Bedeutung verwendet. (de)
  • In mathematics, a univariate object is an expression, equation, function or polynomial involving only one variable. Objects involving more than one variable are multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for example, the fundamental theorem of algebra and Euclid's algorithm for polynomials are fundamental properties of univariate polynomials that cannot be generalized to multivariate polynomials. In statistics, a univariate distribution characterizes one variable, although it can be applied in other ways as well. For example, univariate data are composed of a single scalar component. In time series analysis, the whole time series is the "variable": a univariate time series is the series of values over time of a single quantity. Correspondingly, a "multivariate time series" characterizes the changing values over time of several quantities. In some cases, the terminology is ambiguous, since the values within a univariate time series may be treated using certain types of multivariate statistical analyses and may be represented using multivariate distributions. In addition to the question of scaling, a criterion (variable) in univariate statistics can be described by two important measures (also key figures or parameters): Location & Variation. * Measures of Location Scales (e.g. mode, median, arithmetic mean) describe in which area the data is arranged centrally. * Measures of Variation (e.g. span, interquartile distance, standard deviation) describe how similar or different the data are scattered. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software