About: Van Aubel's theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatQuadrilaterals, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2R7gi7BLCS

In plane geometry, Van Aubel's theorem describes a relationship between squares constructed on the sides of a quadrilateral. Starting with a given convex quadrilateral, construct a square, external to the quadrilateral, on each side. Van Aubel's theorem states that the two line segments between the centers of opposite squares are of equal lengths and are at right angles to one another. Another way of saying the same thing is that the center points of the four squares form the vertices of an equidiagonal orthodiagonal quadrilateral. The theorem is named after Belgian mathematician Henricus Hubertus (Henri) Van Aubel (1830–1906), who published it in 1878.

AttributesValues
rdf:type
rdfs:label
  • مبرهنة فان أوبيل (ar)
  • Satz von van Aubel (de)
  • Teorema de Van Aubel (es)
  • Théorème de van Aubel (fr)
  • 판 아우벌의 정리 (ko)
  • ヴァン・オーベルの定理 (ja)
  • Stelling van Van Aubel (nl)
  • Twierdzenie van Aubela (pl)
  • Teorema de Van Aubel (pt)
  • Теорема Ван-Обеля о четырёхугольнике (ru)
  • Van Aubel's theorem (en)
  • 凡·奧貝爾定理 (zh)
  • Теорема ван Обеля про чотирикутник (uk)
rdfs:comment
  • تبدأ مبرهنة فان أوبيل بإنشاء أربع مربعات على الأضلاع الأربعة لرباعي الأضلاع. يتم تحديد مراكز المربعات المنشأة برسم أقطار المربعات. تنص مبرهنة فان أوبيل أن القطع المستقيمة التي تصل مركزي مربعين متقابلين تكونان متساويتين بالطول وتشكلان زاوية قائمة. تطبق هذه المبرهنة على المضلعات الرباعية المحدبة أو المقعرة كما في الشكل. (ar)
  • Il existe deux théorèmes de van Aubel. L'un décrit certaines relations entre les centres de quatre carrés construits sur les quatre cotés d'un quadrilatère convexe. Ce théorème a été publié par Henricus Hubertus van Aubel en 1878. L'autre est relatif aux rapports de longueurs découpées par des céviennes concourantes d'un triangle. (fr)
  • ヴァン・オーベルの定理(Van Aubel's theorem)とは四角形に関する幾何学の定理である。この定理は1878年に出版された「HH van Aubel」にちなんで命名された。 オーベルの定理ともいう。 (ja)
  • 반 아우벨의 정리는 네덜란드 수학자 (Henricus Hubertus van Aubel)의 이름이 붙은 정리이다. (ko)
  • Twierdzenia van Aubela – twierdzenia geometrii płaskiej przypisywane H.H. van Aubelowi. W literaturze geometrycznej określenie twierdzenie van Aubela używane jest w odniesieniu do przynajmniej dwóch różnych wyników. (pl)
  • Na geometria, o teorema de Van Aubel descreve a relação entre quadrados construídos a partir de um quadrilátero. Este afirma que os dois segmentos de linha entre os quadrados opostos são de comprimentos iguais e ângulos proporcionais, ou seja, os pontos centrais de quatro quadrados formam os vértices de um e . Esse teorema foi publicado por H. H. van Aubel em 1978. Nos triângulos, os triângulos podem formar outros triângulos a partir de uma proporcionalidade formada entre segmentos construídos a partir do baricentro. Essa relação pode ser equacionada: (pt)
  • Теорема Ван-Обеля (Van Aubel или, в некоторых источниках, Van Obel) — теорема фламандского математика Генри ван Обеля (англ. Henricus Hubertus van Aubel), доказанная в 1878 году. Является частным случаем , а из самой теоремы Ван-Обеля следует теорема Тебо. (ru)
  • 凡·奧貝爾定理(van Aubel's theorem)說明:給定一個四邊形,在其邊外側構造一個正方形。將相對的正方形的中心連起,得出兩條線段。線段的長度相等且垂直。 将四个正方形的中心连起来,可以得到一个。 (zh)
  • Теорема ван Обеля (van Aubel або van Obel) — теорема фламандського математика ван Обеля (Henricus Hubertus van Aubel), доведена 1878 року. Є окремим випадком , а зі самої теореми ван Обеля випливає теорема Тебо. (uk)
  • In der ebenen Geometrie beschreibt der Satz von van Aubel eine Beziehung zwischen den Quadraten, die über den Seiten eines Vierecks konstruiert wurden. Der Satz besagt, dass die beiden Strecken zwischen den Mittelpunkten gegenüberliegender Quadrate gleich lang und zueinander rechtwinklig sind. Anders ausgedrückt: Die Mittelpunkte der vier Quadrate sind die Ecken eines orthodiagonalen Vierecks mit gleich langen Diagonalen. Der Satz ist benannt nach (1830–1906), einem Mathematiklehrer am Atheneum (Gymnasium) in Antwerpen, der ihn 1878 veröffentlichte. (de)
  • En geometría plana, el teorema de Van Aubel describe una relación entre los cuadrados construidos sobre los lados de un cuadrilátero.​ Dado un cuadrilátero convexo cualquiera, constrúyase un cuadrado, externo al cuadrilátero, sobre cada uno de sus lados. El teorema de Van Aubel establece que los dos segmentos de línea trazados entre los centros de cada dos cuadrados opuestos son de igual longitud, y forman un ángulo recto entre sí. Otra forma de decir lo mismo es que los puntos centrales de los cuatro cuadrados forman los vértices de un cuadrilátero equidiagonal y ortodiagonal. El teorema lleva el nombre de H. H. van Aubel, quien lo publicó en 1878.​ (es)
  • In plane geometry, Van Aubel's theorem describes a relationship between squares constructed on the sides of a quadrilateral. Starting with a given convex quadrilateral, construct a square, external to the quadrilateral, on each side. Van Aubel's theorem states that the two line segments between the centers of opposite squares are of equal lengths and are at right angles to one another. Another way of saying the same thing is that the center points of the four squares form the vertices of an equidiagonal orthodiagonal quadrilateral. The theorem is named after Belgian mathematician Henricus Hubertus (Henri) Van Aubel (1830–1906), who published it in 1878. (en)
  • De stelling van Van Aubel is een stelling uit de meetkunde. Construeer op elk van de zijden van een vierhoek een vierkant, zodanig, dat als deze vierkanten kloksgewijs worden doorlopen, de zijden van de vierhoek in aaneengesloten richtingen worden doorlopen. Dan geldt dat de twee lijnstukken die de middens van de vierkanten verbinden aan overstaande zijden van de vierhoek, even lang zijn en loodrecht op elkaar staan. (nl)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Van-Aubel-theorem_combined.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
title
  • van Aubel's Theorem (en)
urlname
  • vanAubelsTheorem (en)
has abstract
  • تبدأ مبرهنة فان أوبيل بإنشاء أربع مربعات على الأضلاع الأربعة لرباعي الأضلاع. يتم تحديد مراكز المربعات المنشأة برسم أقطار المربعات. تنص مبرهنة فان أوبيل أن القطع المستقيمة التي تصل مركزي مربعين متقابلين تكونان متساويتين بالطول وتشكلان زاوية قائمة. تطبق هذه المبرهنة على المضلعات الرباعية المحدبة أو المقعرة كما في الشكل. (ar)
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 72 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software