About: Vibratory stress relief     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Software, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FVibratory_stress_relief&invfp=IFP_OFF&sas=SAME_AS_OFF

Vibratory Stress Relief, often abbreviated VSR, is a non-thermal stress relief method used by the metal working industry to enhance the dimensional stability and mechanical integrity of castings, forgings, and welded components, chiefly for two categories of these metal workpieces:

AttributesValues
rdf:type
rdfs:label
  • Vibratory stress relief (en)
rdfs:comment
  • Vibratory Stress Relief, often abbreviated VSR, is a non-thermal stress relief method used by the metal working industry to enhance the dimensional stability and mechanical integrity of castings, forgings, and welded components, chiefly for two categories of these metal workpieces: (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Diagram2.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Ringtime.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Scan_Rate_Chart.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/SteelWeldments.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/VSR_Treatment_Chart.jpg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Vibratory Stress Relief, often abbreviated VSR, is a non-thermal stress relief method used by the metal working industry to enhance the dimensional stability and mechanical integrity of castings, forgings, and welded components, chiefly for two categories of these metal workpieces: * Precision components, which are machined or aligned to tight dimensional or geometric tolerances. Examples include machine tool bases or columns, components of paper mill, mining equipment, or other large-scale processing machinery, and centrifuge rotors. * Heavily loaded metal workpieces, which are components designed and built with the ability to withstand heavy loads. Examples include lifting yokes, clamshell buckets, crane bases, vibratory screening system frames, ingot processing equipment, and rolling mill equipment. This stress is called residual stress, because it remains in a solid material after the original cause of the stress has been removed. Residual stresses can occur through a variety of mechanisms including inelastic (plastic) deformations, temperature gradients (during thermal cycle), or structural changes (phase transformation). For example, heat from welding may cause localized expansion, which is taken up during welding by either the molten metal or the placement of parts being welded. When the finished weldment cools, some areas cool and contract more than others, leaving residual stresses. These stresses often lead to distortion or warping of the structure during machining, assembly, testing, transport, field-use or over time. In extreme cases, residual stress can cause structural failure. Almost all vibratory stress relief equipment manufacturers and procedures use the workpiece's own resonant frequency to boost the loading experienced by induced vibration, so to maximize the degree of stress relief achieved. Some equipment and procedures are designed to operate near, but not at, workpiece resonances (perhaps to extend equipment life) example WIAP research, but independent research has consistently shown resonant frequency vibration to be more effective. See references 4, 6, and 9. The effectiveness of vibratory stress relief is highly questionable. In general, the strain amplitudes achieved during vibratory stress relief are too low to exceed the critical stress required to activate mechanical relaxation during the induced low amplitude high cycle fatigue excitation of the transducer vibrations. If the strain amplitudes were increased to a level sufficient to cause instability in the residual stresses, fatigue damage would occur. For most applications, conventional stress relief methodologies should be applied to components that require the reduction of residual stresses. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software