In order theory, a branch of mathematics, the 1/3–2/3 conjecture states that, if one is comparison sorting a set of items then, no matter what comparisons may have already been performed, it is always possible to choose the next comparison in such a way that it will reduce the number of possible sorted orders by a factor of 2/3 or better. Equivalently, in every finite partially ordered set that is not totally ordered, there exists a pair of elements x and y with the property that at least 1/3 and at most 2/3 of the linear extensions of the partial order place x earlier than y.
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
foaf:depiction | |
dcterms:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
Link from a Wikipage to an external page | |
sameAs | |
dbp:wikiPageUsesTemplate | |
thumbnail | |
has abstract |
|
gold:hypernym | |
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage redirect of | |
is foaf:primaryTopic of |