In the mathematical field of group theory, the Baumslag–Solitar groups are examples of two-generator one-relator groups that play an important role in combinatorial group theory and geometric group theory as (counter)examples and test-cases. They are given by the group presentation For each integer m and n, the Baumslag–Solitar group is denoted BS(m, n). The relation in the presentation is called the Baumslag–Solitar relation. Some of the various BS(m, n) are well-known groups. BS(1, 1) is the free abelian group on two generators, and BS(1, −1) is the fundamental group of the Klein bottle.
Attributes | Values |
---|
rdfs:label
| - Baumslag–Solitar group (en)
- Groupe de Baumslag-Solitar (fr)
- Группа Баумслага — Солитера (ru)
- Група Баумслага — Солітера (uk)
|
rdfs:comment
| - En mathématiques et notamment en théorie des groupes, les groupes de Baumslag-Solitar sont des exemples de groupes à deux générateurs et un relateur qui jouent un rôle important dans la théorie combinatoire des groupes et en théorie géométrique des groupes comme exemples ou contre-exemples. (fr)
- Група Баумслага — Солітера — група з двома твірними і і одним співвідношенням Зазвичай, цю групу позначають . (uk)
- Группа Баумслага — Солитера — группа с двумя образующими и и одним соотношением Обычно, эта группа обычно обозначается . (ru)
- In the mathematical field of group theory, the Baumslag–Solitar groups are examples of two-generator one-relator groups that play an important role in combinatorial group theory and geometric group theory as (counter)examples and test-cases. They are given by the group presentation For each integer m and n, the Baumslag–Solitar group is denoted BS(m, n). The relation in the presentation is called the Baumslag–Solitar relation. Some of the various BS(m, n) are well-known groups. BS(1, 1) is the free abelian group on two generators, and BS(1, −1) is the fundamental group of the Klein bottle. (en)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
author
| |
id
| |
title
| - Baumslag–Solitar group (en)
|
has abstract
| - In the mathematical field of group theory, the Baumslag–Solitar groups are examples of two-generator one-relator groups that play an important role in combinatorial group theory and geometric group theory as (counter)examples and test-cases. They are given by the group presentation For each integer m and n, the Baumslag–Solitar group is denoted BS(m, n). The relation in the presentation is called the Baumslag–Solitar relation. Some of the various BS(m, n) are well-known groups. BS(1, 1) is the free abelian group on two generators, and BS(1, −1) is the fundamental group of the Klein bottle. The groups were defined by Gilbert Baumslag and Donald Solitar in 1962 to provide examples of non-Hopfian groups. The groups contain residually finite groups, Hopfian groups that are not residually finite, and non-Hopfian groups. (en)
- En mathématiques et notamment en théorie des groupes, les groupes de Baumslag-Solitar sont des exemples de groupes à deux générateurs et un relateur qui jouent un rôle important dans la théorie combinatoire des groupes et en théorie géométrique des groupes comme exemples ou contre-exemples. (fr)
- Група Баумслага — Солітера — група з двома твірними і і одним співвідношенням Зазвичай, цю групу позначають . (uk)
- Группа Баумслага — Солитера — группа с двумя образующими и и одним соотношением Обычно, эта группа обычно обозначается . (ru)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |