rdfs:comment
| - In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions. (en)
- Das Bochner-Integral, benannt nach Salomon Bochner, ist eine Verallgemeinerung des Lebesgue-Integrals auf Banachraum-wertige Funktionen. (de)
- En mathématiques, l'intégrale de Bochner, qui porte le nom de son créateur Salomon Bochner, étend la définition de l'intégrale de Lebesgue aux fonctions à valeurs dans un espace de Banach, comme limite d'intégrales de fonctions étagées. (fr)
- 함수해석학에서 보흐너 적분(Bochner積分, 영어: Bochner integral)은 바나흐 공간 값의 함수에 대하여 정의되는, 르베그 적분의 일반화이다. (ko)
- 数学におけるボホナー積分(ボホナーせきぶん、英: Bochner integral)は、サロモン・ボホナーに名を因む、(単函数の積分の極限としての)ルベーグ積分のバナッハ空間に値をとる函数への拡張である。 (ja)
- Całka Bochnera – rozszerzenie pojęcia całki oznaczonej o funkcje przybierające wartości w przestrzeni Banacha. Wprowadzona w 1933 roku przez Salomona Bochnera. (pl)
- Інтеграл Бохнера — це інтеграл для функцій, які приймають значення на банаховому просторі. По суті він є аналогом інтеграла Лебега для векторозначних функцій. (uk)
- 在数学中,以命名的博赫纳积分(英語:Bochner integral)作为简单函数积分的极限,将勒贝格积分的定义推广到在巴拿赫空间中取值的函数。 (zh)
- En matemàtiques, la integral de Bochner estén la definició de la integral de Lebesgue a funcions que prenen valors en un espai de Banach. La teoria de les funcions vectorials és una part del càlcul, implicada en la generalització a funcions que prenen valors en un espai de Banach, o de forma més general en un espai vectorial topològic, de les nocions de sèrie infinita i integral. Inclou com a cas particular la idea de funcions el valor de les quals són , que són bàsiques en la teoria espectral, i aquest cas és el que va motivar la motivació pel seu desenvolupament al voltant de 1930. Quan els vectors pertanyen a un espai de dimensió finita, qualsevol cosa típica es pot fer component per component. (ca)
|