In homological algebra, the Bockstein homomorphism, introduced by Meyer Bockstein , is a connecting homomorphism associated with a short exact sequence of abelian groups, when they are introduced as coefficients into a chain complex C, and which appears in the homology groups as a homomorphism reducing degree by one, To be more precise, C should be a complex of free, or at least torsion-free, abelian groups, and the homology is of the complexes formed by tensor product with C (some flat module condition should enter). The construction of β is by the usual argument (snake lemma). ,;
Attributes | Values |
---|
rdfs:label
| - Bockstein-Folge (de)
- Bockstein homomorphism (en)
- 복시테인 준동형 (ko)
|
rdfs:comment
| - In der Algebraischen Topologie, einem Teilgebiet der Mathematik, ist die Bockstein-Folge ein Hilfsmittel zum Vergleich von Kohomologiegruppen mit unterschiedlichen Koeffizienten, sie ist nach Meir Bockstein benannt. (de)
- 호몰로지 대수학에서 복시테인 준동형(Бокштейн準同型, 영어: Bockstein homomorphism)은 아벨 군의 짧은 완전열에 의하여 생성되는 코호몰로지 연산이다. (ko)
- In homological algebra, the Bockstein homomorphism, introduced by Meyer Bockstein , is a connecting homomorphism associated with a short exact sequence of abelian groups, when they are introduced as coefficients into a chain complex C, and which appears in the homology groups as a homomorphism reducing degree by one, To be more precise, C should be a complex of free, or at least torsion-free, abelian groups, and the homology is of the complexes formed by tensor product with C (some flat module condition should enter). The construction of β is by the usual argument (snake lemma). ,; (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
authorlink
| |
first
| |
last
| |
year
| |
has abstract
| - In homological algebra, the Bockstein homomorphism, introduced by Meyer Bockstein , is a connecting homomorphism associated with a short exact sequence of abelian groups, when they are introduced as coefficients into a chain complex C, and which appears in the homology groups as a homomorphism reducing degree by one, To be more precise, C should be a complex of free, or at least torsion-free, abelian groups, and the homology is of the complexes formed by tensor product with C (some flat module condition should enter). The construction of β is by the usual argument (snake lemma). A similar construction applies to cohomology groups, this time increasing degree by one. Thus we have The Bockstein homomorphism associated to the coefficient sequence is used as one of the generators of the Steenrod algebra. This Bockstein homomorphism has the following two properties: ,; in other words, it is a superderivation acting on the cohomology mod p of a space. (en)
- In der Algebraischen Topologie, einem Teilgebiet der Mathematik, ist die Bockstein-Folge ein Hilfsmittel zum Vergleich von Kohomologiegruppen mit unterschiedlichen Koeffizienten, sie ist nach Meir Bockstein benannt. (de)
- 호몰로지 대수학에서 복시테인 준동형(Бокштейн準同型, 영어: Bockstein homomorphism)은 아벨 군의 짧은 완전열에 의하여 생성되는 코호몰로지 연산이다. (ko)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |