In mathematics, the Bogomolov conjecture is a conjecture, named after Fedor Bogomolov, in arithmetic geometry about algebraic curves that generalizes the Manin-Mumford conjecture in arithmetic geometry. The conjecture was proved by Emmanuel Ullmo and Shou-Wu Zhang in 1998. A further generalization to general abelian varieties was also proved by Zhang in 1998.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Bogomolov conjecture (en)
- ボゴモロフ予想 (ja)
|
rdfs:comment
| - In mathematics, the Bogomolov conjecture is a conjecture, named after Fedor Bogomolov, in arithmetic geometry about algebraic curves that generalizes the Manin-Mumford conjecture in arithmetic geometry. The conjecture was proved by Emmanuel Ullmo and Shou-Wu Zhang in 1998. A further generalization to general abelian varieties was also proved by Zhang in 1998. (en)
- 数学において、(Fedor Bogomolov)に因んで名前の付いたボゴモロフ予想(Bogomolov conjecture)とは、次の予想を言う。 C を代数体 K 上定義された種数 g が 2 以上の代数曲線とし、 を K の代数的閉体とし、C のそのヤコビ多様体 J への埋め込みを固定し、 で豊富な対称的因子に付随した J 上のネロン・テイトの高さを表す。すると、ある が存在し、 集合 が有限 となる。 と P が捩れ点であることは同値であるから、ボゴモロフ予想はマーニン・マンフォード予想を一般化した予想となる。元々のボゴモロフ予想は、(Emmanuel Ullmo)と(Shou-Wu Zhang)により、1998年に証明された。Zhang は、次の一般化された定理を証明した。 A を K 上に定義されたアーベル多様体とし、 を豊富な対称的因子に付随する A 上のネロン・テイトの高さとする。部分多様体 が捩れ部分多様体(torsion subvariety)であるとは、その部分多様体が捩れ点によりアーベル多様体 A のアーベル部分多様体の変換である場合を言う。X が捩れ部分多様体ではない場合は、ある が存在し、 集合 は A において(Zariski dense)ではない。 (ja)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, the Bogomolov conjecture is a conjecture, named after Fedor Bogomolov, in arithmetic geometry about algebraic curves that generalizes the Manin-Mumford conjecture in arithmetic geometry. The conjecture was proved by Emmanuel Ullmo and Shou-Wu Zhang in 1998. A further generalization to general abelian varieties was also proved by Zhang in 1998. (en)
- 数学において、(Fedor Bogomolov)に因んで名前の付いたボゴモロフ予想(Bogomolov conjecture)とは、次の予想を言う。 C を代数体 K 上定義された種数 g が 2 以上の代数曲線とし、 を K の代数的閉体とし、C のそのヤコビ多様体 J への埋め込みを固定し、 で豊富な対称的因子に付随した J 上のネロン・テイトの高さを表す。すると、ある が存在し、 集合 が有限 となる。 と P が捩れ点であることは同値であるから、ボゴモロフ予想はマーニン・マンフォード予想を一般化した予想となる。元々のボゴモロフ予想は、(Emmanuel Ullmo)と(Shou-Wu Zhang)により、1998年に証明された。Zhang は、次の一般化された定理を証明した。 A を K 上に定義されたアーベル多様体とし、 を豊富な対称的因子に付随する A 上のネロン・テイトの高さとする。部分多様体 が捩れ部分多様体(torsion subvariety)であるとは、その部分多様体が捩れ点によりアーベル多様体 A のアーベル部分多様体の変換である場合を言う。X が捩れ部分多様体ではない場合は、ある が存在し、 集合 は A において(Zariski dense)ではない。 (ja)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage disambiguates
of | |
is foaf:primaryTopic
of | |