The Born series is the expansion of different scattering quantities in quantum scattering theory in the powers of the interaction potential (more precisely in powers of where is the free particle Green's operator). It is closely related to Born approximation, which is the first order term of the Born series. The series can formally be understood as power series introducing the coupling constant by substitution . The speed of convergence and radius of convergence of the Born series are related to eigenvalues of the operator . In general the first few terms of the Born series are good approximation to the expanded quantity for "weak" interaction and large collision energy.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Bornova řada (cs)
- Born series (en)
|
rdfs:comment
| - Bornovou řadou se rozumí rozvoj různých rozptylových veličin v kvantové teorii rozptylu do řady v mocninách interakčního potenciálu (přesněji v mocninách kde je pro volnou částici). Omezením se na členy do prvního řádu dostaneme . Tato řada se dá chápat jako mocninná řada ve vazbové konstantě, kterou zavedeme substitucí . Rychlost a poloměr konvergence Bornovy řady jsou dány vlastními čísly operátoru . Obecně lze říci, že první členy Bornovy řady dobře aproximují příslušnou veličinu pro "slabý" potenciál a pro velkou srážkovou energii. (cs)
- The Born series is the expansion of different scattering quantities in quantum scattering theory in the powers of the interaction potential (more precisely in powers of where is the free particle Green's operator). It is closely related to Born approximation, which is the first order term of the Born series. The series can formally be understood as power series introducing the coupling constant by substitution . The speed of convergence and radius of convergence of the Born series are related to eigenvalues of the operator . In general the first few terms of the Born series are good approximation to the expanded quantity for "weak" interaction and large collision energy. (en)
|
differentFrom
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - Bornovou řadou se rozumí rozvoj různých rozptylových veličin v kvantové teorii rozptylu do řady v mocninách interakčního potenciálu (přesněji v mocninách kde je pro volnou částici). Omezením se na členy do prvního řádu dostaneme . Tato řada se dá chápat jako mocninná řada ve vazbové konstantě, kterou zavedeme substitucí . Rychlost a poloměr konvergence Bornovy řady jsou dány vlastními čísly operátoru . Obecně lze říci, že první členy Bornovy řady dobře aproximují příslušnou veličinu pro "slabý" potenciál a pro velkou srážkovou energii. (cs)
- The Born series is the expansion of different scattering quantities in quantum scattering theory in the powers of the interaction potential (more precisely in powers of where is the free particle Green's operator). It is closely related to Born approximation, which is the first order term of the Born series. The series can formally be understood as power series introducing the coupling constant by substitution . The speed of convergence and radius of convergence of the Born series are related to eigenvalues of the operator . In general the first few terms of the Born series are good approximation to the expanded quantity for "weak" interaction and large collision energy. (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is known for
of | |
is known for
of | |
is foaf:primaryTopic
of | |