About: Born series     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/9xukQvHjM2

The Born series is the expansion of different scattering quantities in quantum scattering theory in the powers of the interaction potential (more precisely in powers of where is the free particle Green's operator). It is closely related to Born approximation, which is the first order term of the Born series. The series can formally be understood as power series introducing the coupling constant by substitution . The speed of convergence and radius of convergence of the Born series are related to eigenvalues of the operator . In general the first few terms of the Born series are good approximation to the expanded quantity for "weak" interaction and large collision energy.

AttributesValues
rdf:type
rdfs:label
  • Bornova řada (cs)
  • Born series (en)
rdfs:comment
  • Bornovou řadou se rozumí rozvoj různých rozptylových veličin v kvantové teorii rozptylu do řady v mocninách interakčního potenciálu (přesněji v mocninách kde je pro volnou částici). Omezením se na členy do prvního řádu dostaneme . Tato řada se dá chápat jako mocninná řada ve vazbové konstantě, kterou zavedeme substitucí . Rychlost a poloměr konvergence Bornovy řady jsou dány vlastními čísly operátoru . Obecně lze říci, že první členy Bornovy řady dobře aproximují příslušnou veličinu pro "slabý" potenciál a pro velkou srážkovou energii. (cs)
  • The Born series is the expansion of different scattering quantities in quantum scattering theory in the powers of the interaction potential (more precisely in powers of where is the free particle Green's operator). It is closely related to Born approximation, which is the first order term of the Born series. The series can formally be understood as power series introducing the coupling constant by substitution . The speed of convergence and radius of convergence of the Born series are related to eigenvalues of the operator . In general the first few terms of the Born series are good approximation to the expanded quantity for "weak" interaction and large collision energy. (en)
differentFrom
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Bornovou řadou se rozumí rozvoj různých rozptylových veličin v kvantové teorii rozptylu do řady v mocninách interakčního potenciálu (přesněji v mocninách kde je pro volnou částici). Omezením se na členy do prvního řádu dostaneme . Tato řada se dá chápat jako mocninná řada ve vazbové konstantě, kterou zavedeme substitucí . Rychlost a poloměr konvergence Bornovy řady jsou dány vlastními čísly operátoru . Obecně lze říci, že první členy Bornovy řady dobře aproximují příslušnou veličinu pro "slabý" potenciál a pro velkou srážkovou energii. (cs)
  • The Born series is the expansion of different scattering quantities in quantum scattering theory in the powers of the interaction potential (more precisely in powers of where is the free particle Green's operator). It is closely related to Born approximation, which is the first order term of the Born series. The series can formally be understood as power series introducing the coupling constant by substitution . The speed of convergence and radius of convergence of the Born series are related to eigenvalues of the operator . In general the first few terms of the Born series are good approximation to the expanded quantity for "weak" interaction and large collision energy. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software